

RSS-8929-8

# System for Anomaly and Failure Detection (SAFD) System Development

Final Report Volume I of V

22 December 1995

Contract NAS8-40000

Task 233

Prepared by

D. O'Reilly Project Engineer

Approved by

R. S. Strickland Project Manager S. L. Harris Manager

S. L. Warris

SSME Technology Support Team

### Volume I Table of Contents

|                                                     | l    |
|-----------------------------------------------------|------|
| Executive Summary                                   | 1    |
| Introduction                                        | 4    |
| 1.1 Document Overview                               | 4    |
| 1.1 Document Overview                               | 5    |
| 1.3 Environment                                     | 5    |
| 1.3 Environment                                     | 7    |
| 2 SAFD Platform                                     | 7    |
| 2.1 SAFD Platform Hardware                          | 8    |
| 2.1 SAFD Platform Hardware                          | .8   |
| 2.1.2 SAFD Platform Hardware Open Stream            | .8   |
| 2.2 SAFD Platform Software                          | .9   |
| 2.2.1 SAFD Vendor Supplied Software                 | .9   |
| 2.2.2 SAFD Rocketdyne Supplied Software             | .9   |
| 2.2.3 SAFD Platform Software Open 31115             | .10  |
| 2.3 Recommendations                                 | .11  |
| 3 SAFD Algorithm                                    | .11  |
| 3.1 Algorithm Version 4.0                           | .11  |
| 3.1.1 Algorithm Operation                           | .11  |
| 3.1.1.1 Shutdown Monitoring                         | .14  |
| 3.1.1.2 Sensor Qualification                        | 15   |
| 3.1.2 Algorithm Open SPRS                           | 15   |
| 3.2 Off-Line Hot Fire Testing                       | 16   |
| 3.2.1 Significant Failures                          | 20   |
| 3.2.2 Other Failures 3.2.3 Good Tests               | 20   |
| 3.2.3 Good Tests                                    | 21   |
| 3.2.3.1 Rocketdyne Pumps and Nominal CCV            | 23   |
| 3.2.3.2 Pratt LOX Pumps and Nominal CCV             | 24   |
| 3.2.3.3 Pratt LOX Pumps and Modified CCV            | 27   |
| 3.3 Simulation Lab Testing                          | . 27 |
| 3.4 Live Hot Fire Test Experience 3.4.1 TTB Testing | 27   |
| 3.4.1 TTB Testing                                   | 28   |
| 3.4.1 A1 Testing                                    | 28   |
| 3.5 Algorithm Analysis 3.6 Conclusions              | 28   |
| 3.6 Conclusions 3.7 Recommendations                 | 29   |
| 3.7 Recommendations                                 | 30   |
|                                                     |      |
| A                                                   | 34   |
| 6 Acronyms                                          |      |

### List of Figures

|                                                                | •                                                                                                                   | = |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---|
| Figure 2 - SAFD Sys<br>Figure 3 - SAFD Blo                     | B Configuration  Stem Architecture  Ock Diagram  / Hardware Mapping  n Operation                                    |   |
|                                                                | Tables                                                                                                              |   |
| Table II Adapta Table IV Test Table V Test Re Table VI Test Re | ation Data for Rocketdyne Pumps w/ Nominal CCV Schedule                                                             |   |
|                                                                | Appendices                                                                                                          |   |
|                                                                | Volume II                                                                                                           |   |
| Appendix A                                                     | 33 Failures                                                                                                         |   |
|                                                                | Volume III                                                                                                          |   |
| Appendix B                                                     | Other Failures                                                                                                      |   |
|                                                                | Volume IV                                                                                                           |   |
| Appendix C1<br>Appendix C2<br>Appendix C3                      | Good Tests - RD Engine/Nominal CCV<br>Good Tests - PW LOX Pump/Nominal CCV<br>Good Tests - PW LOX Pump/Modified CCV |   |
|                                                                | Volume V                                                                                                            |   |
| Appendix D1<br>Appendix D2                                     | Test 901-847<br>Test 901-848                                                                                        |   |

#### **Executive Summary**

Task assignment 233 is a continuation of Task 23 which specified developing a platform for executing the System for Anomaly and Failure Detection (SAFD) algorithm during hot fire tests at Technology Test Bed (TTB) and installing the SAFD algorithm on that platform. Two units were built and installed in the Hardware Simulation Lab and at the TTB in December 1991. Since that time, efforts have been toward improving and maintaining the systems, improving the algorithm, performing additional tests to prove the feasibility of the algorithm, and supporting hot fire testing. This document addresses the work done since the last report of January 1995 which closed Task 23.

The SAFD algorithm was developed to augment the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). The primary goal was to save hardware during hot fire test failures. Execution against previous hot fire tests demonstrated that the SAFD algorithm can often detect engine failures prior to the redline system detecting them and, in some cases, this early detection could save significant hardware.

The algorithm operates continuously at 40ms intervals from start + 7.00 seconds to shutdown as long as the engine is in mainstage normal. It currently monitors 21 parameters and includes provisions for sensor qualification.

The algorithm uses simple equations to predict parameter values based on Pc Reference and inlet pressures. The limits are established around these predicted values. A five sample running average is maintained for each qualified parameter and is compared to the limits each cycle. The parameters are weighted for their contribution to cut and if the total weight of parameters out of limits exceeds the cut value, SAFD will request shutdown.

The algorithm includes two methods of sensor qualification; rate and range. The rate limit qualification disqualifies a parameters if the parameter moves more than the rate qualification limit in a 40 ms period. The range limits include an upper and lower limit for the parameter. The rate and range limits are set individually for each parameter.

All values for limits, delays, rates, weights, etc. are changeable by adaptation data.

The work on SAFD under Task 233 included improving the platform and the algorithm, deriving "standard" adaptation data, testing the algorithm against hot fire test data, providing support for operations at the TTB, providing routine maintenance, and moving the unit at TTB to SSC.

SAFD Final Report 22 December 1995

During this period, version 4.1 of the platform software was delivered. Version 4.0 of the algorithm was also formally delivered.

The changes to the platform software closed all but 5 of the outstanding System Problem Reports (SPRs). There are 4 outstanding SPRs against the platform and 1 against the algorithm. None of these problems are serious, but they should be corrected.

Under this task, efforts were initiated to derive "standard" adaptation data for the following engine configurations:

All Rocketdyne engine with nominal CCV schedule Pratt LOX pump with nominal CCV schedule Pratt LOX pump with modified CCV schedule

This standard adaptation data was derived with emphasis on reducing the risk of shutting down a good engine. Therefore, it can be expected to be less sensitive to failures.

This standard adaptation data was executed against 329 hot fire tests. These tests included the 33 failures designated "significant" by engine systems of which 19 were usable for SAFD testing, 29 "other" failures of which 24 were usable and 267 "good" tests of which 256 were usable. The unusable tests were either missing too much data or the engine shut down prior to SAFD activation.

As expected, the more generic adaptation data reduced algorithm sensitivity to failures. With engine specific and more sensitive data, 14 of the 19 usable significant failures were detected prior to redline shutdown. With the generic adaptation data, 8 of the 19 failures were detected prior to the redlines. The 5 cases originally detected that were not detected with the new adaptation data were rapid failures and engine systems determined that the early shutdowns indicated in earlier testing would not have saved hardware. There were 3 cases of early SAFD shutdown that engine systems determined would have saved hardware. These cases had a potential combined savings of over \$40 million were detected early even with the new adaptation data (these were slowly occurring failures). The significant failure cases included two with Pratt LOX pumps.

The other failures group included 29 tests. Of the usable 24, SAFD indicated shutdown before the redlines in 4 tests.

The good tests group included 267 tests. Of these, 95 (88 usable) had a nominally Rocketdyne configured engine with nominal CCV schedule, 46 (45 usable) had a Pratt LOX pump with a nominal CCV schedule, and 126 (123 usable) had a Pratt LOX pump with a modified CCV schedule. SAFD indicated cut in only one of these tests (901-307) and the parameters appear to indicate off nominal engine operation. Further review is planned with engine systems to determine the cause of the shutdown on this test.

Under Task 233, Rocketdyne personnel supported SAFD during hot fire tests TTB-055 through TTB-059 except TTB-056. NASA personnel supported TTB-056. There was no unexpected behavior in these tests. SAFD was fully integrated into the TTB test process for tests TTB-057 through TTB-059 and the cutoff capability was activated for TTB-059. This activity was in preparation for moving the unit to SSC.

In December of 1995, the unit at TTB was moved to the A1 test stand at Stennis Space Center (SSC). After installation, SAFD personnel supported hot fire test 901-847 at SSC where SAFD operated in the monitor mode. The inputs for two of the facility parameters were reversed during this test, but no cutoff was signaled and the error was corrected post test. A post test rerun using the recorded data indicated no parameters out of limits. SAFD subsequently monitored test 901-848 with the only anomaly being that the PBP accel was disqualified due to loss of the signal.

Testing, both offline and at the test stands, indicates that the algorithm is acceptable for use on the test stands during nominal tests and that standard adaptation data can be used. However, the following conditions must be considered:

- The algorithm should not be used on tests where mixture ratio excursions, CCV excursions, or other special off-nominal tests are planned. If it is used during these tests, the limits must be expanded to accommodate the shifts in the parameter values or the adaptation data must be set to ignore the affected parameters.
- If the engine is a configuration other than those tested here, adaptation data changes will be required.
- The algorithm will cease monitoring during modes other than Mainstage Normal (eg. Thrust Limiting, Electrical Lockup, Hydraulic Lockup).

As a result of testing and analysis, several areas for improvement have been identified. These should be examined for feasibility and implemented if possible. These areas include further refinement of the adaptation data, use of dynamic data to establish all limits, and improvements in parameter prediction.

The algorithm is now being used at test stand A1 in monitor mode. Before it is activated for cut, a procedure should be established to include engine systems personnel in the process of generating/reviewing adaptation data.

This report concludes Task 233. All objectives of the task were met.

#### 1 Introduction

TTB STA 23 specified building the hardware and software to implement the algorithm being developed under STA 21. The task involved building two units: one that is installed in the Hardware Simulation Lab (HSL) and one that was installed at the TTB. Task Assignment 233 specified moving the unit at TTB to Stennis Space Center (SSC) and that unit is currently installed at test stand A1. Rocketdyne personnel at the HSL performed the task. The effort since the last report has consisted of product improvement, testing, and maintenance.

#### 1.1 Document Overview

This report relates in detail the approaches taken, the lessons learned, and recommendation for future efforts. The report is broken down as follows:

| Section 1 | Introduction       |
|-----------|--------------------|
| Section 2 | The SAFD Platform  |
| Section 3 | The SAFD Algorithm |
| Section 4 | Other Algorithms   |
| Section 5 | Summary            |

#### 1.2 Deliverables

The following list enumerates the current documentation revision levels and serial numbers for deliverables.

| Item Doc Doc Doc HW HW Doc SW Doc | ID  RHF-0032-001 RHF-0032-005 RHF-0032-007 SAFD serial # 1 SAFD serial # 2 N/A Platform v4.0 RHF-0032-003 RHF-0032-011 RHF-0032-013 RHF-0032-015  Algorithm v4.0 RHF-0032-020 | System Specification System Development Plan User Guide SAFD Hardware SAFD Hardware SAFD Hardware Drawings Platform Software Platform Software Requirements Platform Test Plan Platform Test Description Platform Test Report Platform Version Description Doc Algorithm Software Algorithm Software Requirements |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                                                                     | Algorithm v4.0                                                                                                                                                                | Algorithm Software Requirements                                                                                                                                                                                                                                                                                   |
| Doc                                                                   |                                                                                                                                                                               | Algorithm Software Design                                                                                                                                                                                                                                                                                         |
| $D\infty$                                                             | RHF-0032-021                                                                                                                                                                  | Algorithm Test Plan                                                                                                                                                                                                                                                                                               |
| Doc                                                                   | RHF-0032-022                                                                                                                                                                  | Algorithm Test Description                                                                                                                                                                                                                                                                                        |
| $D\infty$                                                             | RHF-0032-023                                                                                                                                                                  | Algorithm Test Description                                                                                                                                                                                                                                                                                        |

Doc RHF-0032-024

Algorithm Test Report Algorithm Version Description Doc

#### 1.3 Environment

SAFD is designed to operate in the SSME test stand environment. The system obtains Vehicle Data Table (VDT) input from a spare VDT output in the Command and Data Simulator (CADS), facility measurements from the facility Signal Interface Units (SIUs), and Greenwich Mean Time (GMT) from the facility GMT lines. It generates a cut signal by closing a relay connected to the facility cutoff panel. Figure 1 illustrates the configuration of SAFD at the TTB.



Figure 1 - SAFD TTB Configuration

### 1.4 System Overview

During the system definition phase, NASA and Rocketdyne agreed that it would be cost effective to separate the platform, which included the system hardware and those software functions not directly associated with the algorithm, from the algorithm implementation. The reasoning behind the decision was that the SAFD algorithm was being expanded to include transients and that at least two other efforts were underway to develop algorithms. This decision led to a system which allows multiple algorithms executing simultaneously and allows updating existing algorithms or creating new algorithms without modification of the platform software or hardware.

This modular approach led to a system where the platform handles all input/output, scaling, scheduling, recording/playback, display, and user

interface as these functions are common to all algorithms. Isolating these function from the algorithms yields a stable platform upon which the algorithms can be executed. Since the algorithms do not contain generic functions, only the code directly required to implement a particular monitoring approach need be contained in the algorithm. The algorithms are thus isolated from the user and the hardware environment. Since the developer need not worry about the generic functions handled by the platform, it is easier to change existing algorithms and to create and integrate new algorithms. Figure 2 illustrates the concept.



Figure 2 - SAFD System Architecture

#### 2 SAFD Platform

The platform includes all hardware and software components except the algorithm software. Under Task Assignment 233 there were no significant modifications to the hardware, but a new version of the SAFD platform software was installed.

#### 2.1 SAFD Platform Hardware

The SAFD platform hardware includes all hardware purchased or developed under the task. The hardware is built around a Concurrent 6450 computer using off-the-shelf components where available. Rocketdyne built custom hardware for those components not available off-the-shelf. Figure 3 shows a block diagram of the SAFD system.



Figure 3 - SAFD Block Diagram

The major hardware components include the following:

Concurrent 6450 computer and peripherals VDT interface Facility analog interface GMT Time Code Generator (TCG) and interface Cutoff logic

### 2.1.1 SAFD Platform Hardware Changes

There were no platform hardware changes during this reporting period.

### 2.1.2 SAFD Platform Hardware Open SPRs

There are no SPRs open against the platform hardware.

### 2.2 SAFD Platform Software

The SAFD platform software includes all software not directly associated with an algorithm. Functions not requiring realtime response are executed on the boot processor (CPU1). Those requiring realtime response and the algorithms are executed on the realtime processor (CPU2). Figure 4 illustrates the software/hardware mapping for the system. The following paragraphs document changes in off-the-shelf vendor supplied software and in the Rocketdyne supplied software.



Figure 4 - Software / Hardware Mapping

### 2.2.1 SAFD Vendor Supplied Software

There were no changes in the vendor supplied software during this reporting period.

### 22.2 SAFD Rocketdyne Supplied Software

Version 4.1 of the Rocketdyne supplied platform software was installed in June 1995. Version 4.1 closed the following SPRs:

- No error msg displayed for syntax errors in algorithm map. This problem also exists in the parameter map.
- 2925 Algorithm and parameter maps do not allow comments.
- 2927 Playback cannot "back up" over an "out of synch" VDT.
- 2928 During test execution, platform hangs on "input not found" error condition.
- 2929 Platform allows only 9 facility parameters.
- 2930 Analyze function needs to be updated to modes and disqualification information available from new algorithm.
- 2931 Platform range checking is no longer needed.
- 2932 Make the test record file name available to user for use in graphs.
- 2933 Change "Save" and "Save As" to operate without requiring user to change something on the screen.
- 2934 Add the calibrated coefficients to the TRF and allow an ideal simulated calibration.
- 3476 Change cutoff checkout to allow the user to set and clear the cutoff relay.

### 2.2.3 SAFD Platform Software Open SPRs

The following SPRs remain open against the SAFD platform software.

Test does not abort for loss of VDT.

The software will not abort a test when VDT data is lost. This is the preferred response as algorithms may someday exist which

do not require VDT data or there may be occasions where only facility data need be monitored (such as troubleshooting). The requirements will be changed in the next update.

- Data Errors not incremented for bad VDT.

  The systems maintains the error count and marks "bad" VDTs, but does not post the count to the screen. This does not affect operation of the system.
- Occasionally calibration fails to input the correct low or high cal point because the cache does not get flushed.
- 3478 Platform hangs during test save if more than 128 parameters are entered in the parameter map.
- 3479 Platform allows user to save incomplete test setup.

### 2.3 Recommendations

SPR 2874 will be closed via requirements change. There are no plans to close SPR 2875 as the gain from implementing it does not justify the expense of implementation. SPRs 2935, 3478, and 3479 will be closed in the next release.

SAFD Final Report 22 December 1995

### 3 SAFD Algorithm

The requirements for the SAFD algorithm originated with the work done at Rocketdyne in Canoga Park, California under TTB Task 21. The SAFD algorithm was developed to augment the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Testing has demonstrated that with slowly occurring failures the SAFD algorithm can detect engine failures as much as tens of seconds before the redline system recognizes the failure.

### 3.1 Algorithm Version 4.0

Version 4.0 of the algorithm is currently installed in both units.

### 3.1.1 Algorithm Operation

The algorithm operates in 5 modes. In addition to the 5 modes, the algorithm implements a first instance check which simply verifies that the parameter is within a specified range during the first active cycle (7.00 or 7.02 seconds). Modes 1, 2, and 5 operate during steady state conditions. Modes 3 and 4 are active during power up and power down respectively. The requirements for cutoff have been changed such that any two turbine temperatures will cause a request for shutdown. Figure 5 illustrates algorithm operation. Mode 4 operates as mode 3 but in the opposite direction. The algorithm also provides the capability to apply a gain to parameters during a specified time period and to modify parameter predictions based on inlet pressures and repress valve operation.

The algorithm includes qualification monitoring for both rate qualification and range qualification.

### 3.1.1.1 Shutdown Monitoring

Shutdown monitoring continues from 7.00 seconds after start until shutdown as long as the engine is in mainstage normal. If the engine enters other modes, such as thrust limiting or hydraulic or electrical lockup, monitoring is suspended. In order to request shutdown, the weights of the parameters out of limits must add up to 3.0. Currently, all parameters are weighted 1.0. A running average of the most recent 5 samples rather than the actual parameter value is checked against parameter limits for purposes of shutdown monitoring.

The algorithm maintains an expected value for each parameter. This expected value is used as a reference to establish the limits for each parameter.



Figure 5 - Algorithm Operation

The algorithm adjusts the expected value of some parameters based on fuel and LOX inlet pressures. This is accomplished by adjusting the

22 December 1995

expected value of the parameter via a slope factor which is set via adaptation data and then reapplying the current limits based on the new expected value. Similarly, adjustments to certain parameters are made when the fuel and GOX repress valves are cycled except that the values are adjusted via an offset set by adaptation data.

The algorithm also provides the ability to modify the expected value as a function of time. This is accomplished by applying a gain during a specified interval with the gain and the interval being adaptation data. This allows closer prediction of parameters that drift over time such as HPOP IMSL Purge Pressure on engines with Rocketdyne LOX pumps.

At 7.00 seconds a first instance check is made. This check verifies that the parameter is within a preset range. The preset range is loaded via adaptation data. This first value begins the accumulation of values for use in calculating the 5 sample running average.

After the first instance check or at the conclusion of mode 5, the algorithm enters mode 1 and sets the expected value to the current running average. In this mode, the limits are based on a preset upper and lower band loaded as adaptation data. A value calculated by multiplying an n factor times a standard deviation is added to this upper and lower band. The n factor and standard deviation are loaded as adaptation data. The bands are then added (for the upper) and subtracted (for the lower) from the expected value to establish parameter limits. During this period values are saved to calculate standard deviation for use during mode 2. The length of time that the algorithm remains in mode 1 is determined by adaptation data and is nominally 2.00 seconds.

At the conclusion of mode 1, if the engine is in steady state, the algorithm enters mode 2 and sets the expected value to the current running average. Mode 2 uses preset upper and lower limits plus an n factor times the standard deviation calculated for mode 1. The preset upper and lower limits and the n factor are adaptation data. The resulting value is the added (for the upper) or subtracted (for the lower) from the expected value to establish the limits for mode 2. The algorithm will then remain in mode 2 until power level changes or until shutdown.

Modes 3 and 4 operate identically but in opposite directions. If the power level increases (as detected by monitoring Pc Reference), the algorithm will enter mode 3. If it decreases, the algorithm will enter mode 4. Note that all adaptation values for modes 3 and 4 are independent. Note also that modes 3 and 4 can be entered from any other mode.

Upon entry into mode 3 or 4, the algorithm sets the expected value to the current running average. It then sets the limits to this expected value plus

(upper limit) and minus (lower limit) a preset upper and lower limit which are loaded via adaptation data. This submode (a) remains in effect for a preset period which is also set via adaptation data. This delay accommodates lag in the parameters with respect to changes in power level.

After expiration of the delay for submode a, the algorithm enters submode b, c, or d and begins to adjust the expected value of parameters based on a gain which is set via adaptation data. As the expected value changes, the limits are reapplied using the new expected value. The determination of which of these modes to enter is based on the amount of change in Pc Reference. The only difference in these submodes is the size of the bands for the parameter limits. Normally, the algorithm enters b, followed by c, followed by d, although it may skip one or more of these modes.

When Pc Reference levels off again, the algorithm enters submode e where it continues to use the limits established in the previous submode (a, b, c, or d) and adjusts the expected value via the gain (the same gain used for submodes b, c, and d). As it adjusts the expected value it also reapplies the limits. The algorithm remains in this mode for a period established via adaptation data. As with submode a, this accounts for lag in the parameter during changes in power level.

At the conclusion of submode e, the algorithm enters mode 5. In mode 5 it retains the previously set limits and the previously calculated expected value. It remains in mode 5 for a predetermined time set by adaptation data. At the conclusion of mode 5, the algorithm reenters mode 1 and begins the cycle anew.

### 3.1.1.2 Sensor Qualification

Sensor qualification was added to version 4.0 of the SAFD algorithm. The sensor qualification includes both range and rate qualification. All values used for sensor qualification are loaded as adaptation data.

The range qualification simply checks that the parameter is within a specified range.

The rate qualification calculates the amount of change in a parameter during each 40ms period and then compares this to the value loaded as adaptation data. This value is currently set at 60% of the sensor range for most of the parameters.

If a parameter fails either of these qualification tests, monitoring for that parameter is suspended for the duration of the test.

### 3.1.2 Algorithm Open SPRs

3477 Algorithm does not set output tags correctly under some conditions.

### 3.2 Off-Line Hot Fire Testing

In order to assess the validity of the algorithm, Rocketdyne personnel executed the algorithm against hot fire data. The data included cases with engine failures as well as good tests and included a variety of engines and engine configurations from all single engine test stands.

The parameter data from 329 tests were downloaded to the HSL. The tests were divided into three groups; significant failures, other failures, and good tests.

Since the last report an was initiated to "standardize" the adaptation data. Adaptation data was derived for the following engine configurations:

Rocketdyne pumps and nominal CCV schedule Pratt LOX pump with nominal CCV schedule Pratt LOX pump with modified CCV schedule

Gains for the parameter prediction equations were changed for each configuration. To get this data a sample of the gains during ramping was taken from 10 tests in that category and averaged.

In many cases, a statistical approach to deriving adapatation data for parameter limits did not yield the desired results. Instead an empirical approach was used where the adaptation data was executed against the good tests and, where a number of tests failed the same parameter and the parameter appeared normal, the limits were widened to accommodate the samples. The resulting adaptation data was then executed against the failure cases. The adaptation data was derived to minimize the chances of shutting down a good engine and therefore made the algorithm less sensitive to failures. The parameter limits for the configurations are the same for all configurations excepting HPOP IMSL Pr and HPFP Balance Cavity Pressure. These two are different for Rocketdyne and Pratt pump configurations.

Tables I, II, and III contain the adaptation data used for RD Engines w/nominal CCV schedule, Pratt LOX pump w/nominal CCV schedule and Pratt LOX pump w/modified CCV schedule respectively.

The following paragraphs detail the results of these tests. Note that the results of this series of tests have not yet been reviewed by engine systems.

### 3.2.1 Significant Failures

A list of 33 significant failures obtained from engine systems constituted the "significant failures". Of the 33, 14 had no data, were shutdown during start, or had inadequate data. The results from the other 19 "significant failures" were analyzed and in 8 cases the SAFD algorithm detected the failure prior to shutdown. As expected, the standardized adaptation data reduced the sensitivity of the algorithm so that the percentage of failures detected was not as high as in previous testing. Previous reports indicated that 14 of the 19 failures were caught by SAFD prior to redline shutdown. The 5 that were no longer caught prior to shutdown were rapidly occurring failures and the earlier shutdowns would not have saved hardware. The 3 failures previously reported as potentially saving \$40 million were still caught early with the generic adaptation data. Table IV contains a summary of the testing and Appendix A contains plots for the out of limit parameters.

All but two of the significant failure cases were executed using the adaptation data for Rocketdyne pumps and nominal CCV schedule. Two tests were engines with Pratt LOX pumps and the appropriate adaptation data was used for these tests.

#### 750-041

Shutdown in Start.

#### 750-148

SAFD did not detect the failure prior to shutdown. However, there were 7 of the 21 parameters missing or disqualified, including the HPOP TDTs. Note also that the failure occured during mode 1 while the limits on parameters are still quite wide. HPFP Balance Cavity Prindicated out at 15.72 seconds and HPOP PBP Discharge Prindicated out at 15.76. Engine shutdown was at 16.00 for HPOP TDT.

#### 750-160

Shutdown in Start.

#### 750-175

SAFD indicated cut at 115.60 for the following parameters:

HPFP Balance Cavity Pr HPFP Coolant Liner Pr HPFP Discharge Pr HPOP Accel HPOP Discharge Pr HPOP PBP Discharge Pr LPOP Discharge Pr Engine shutdown was after 115.60 for facility HPOP Accel.

#### 750-259

SAFD indicated cut at 101.38 for the following parameters:

HPFP Coolant Liner Pr HPFP Discharge Pr HPFP TDT A HPOP Discharge Pr

LPOP Discharge Pr MCC Liner Cavity Pr

Engine shutdown was after 101.50 for facility HPFP Accel.

#### 750-285

SAFD indicated no parameters out of limits. Engine shutdown was at 223.54 for powerhead thermocouple.

901-110

901-133

901-136

901-147

No data or bad data.

#### 750-285

SAFD indicated no parameters out of limits.

Engine shutdown was at 223.54 for powerhead thermocouple.

#### 901-173

SAFD did not detect the failure prior to shutdown. However, there were 7 of the 21 parameters missing or disqualified, including the HPFP TDTs. HPFP Coolant Liner Pr and MCC Pc indicated out of limits prior to shutdown with MCC Pc indicating out at 201.00 seconds and HPFP Coolant Liner Pr indicating out at 201.08.

Engine shutdown was after 201.16 for HPFP TDT.

#### 901-183

SAFD did not detect the failure prior to shutdown. HPFP Balance Cavity Pr appeared ragged during the test and jumped high prior to shutdown. However, this was during a throttling phase where the limits were wider and the parameter did not register out of limits at this time. HPFP accel registered out of limits at 50.86 but three parameters are required for shutdown.

Engine shutdown was after 51.06 for HPFP Accel.

#### 901-222

Data missing.

#### 901-225

SAFD did not detect the failure prior to shutdown. HPOP TDT exceeded the upper limit at about 14 seconds and exhibited strange behavior at 117 seconds. HPOP IMSL Pr appears unusually high for the entire test and exceeded the limit at about 155 seconds. The two parameters may not be related to the shutdown.

Engine shutdown was after 255.58 for HPFP TDT. These TDTs appear OK in the VDT.

#### 901-284

SAFD did not detect the failure prior to shutdown. However, the first instance check was not used for this run. It would have been able to detect the failure at 7.02 seconds. Engine systems estimates that \$9.2 million could have been saved by early shutdown.

#### 901-331

SAFD indicated cut at 232.48 for the following parameters:
HPFP Accel
HPFP Discharge Pr
LPFP Shaft Sp
MCC Pc

Engine shutdown was after 233.04 for HPOP Accel.

#### 901-364

SAFD indicated cut at 386.20 for the following parameters:

HPFP Accel HPFP TDT A HPFP TDT B

The following parameters were lost at 268.52 seconds.

FPOV Pos
HPFP Discharge Pr
HPOP PBP Discharge Pr
HPOP TDT A
HPOP TDT B
LPFP Shaft Sp
LPOP Discharge Pr
OPOV Pos.

Engine shutdown was after 392.16 for HPOP Accel. Engine systems estimates that \$24.5 million could have been saved by early shutdown.

#### 901-436

SAFD indicated cut from 525.52 to 526.24 for the following parameters:

HPOP IMSL Pr HPOP TDT A HPOP TDT B

These do not appear related to the failure, but should be examined by engine systems.

SAFD indicates cut at 610.88 for the following parameters:

FPOV Position Fuel Flow HPFP Coolant Liner Pr HPFP TDT A HPFP TDT B

Engine shutdown was after 611.04 for HPFP TDT.

#### 901-468

SAFD did not detect the failure. HPFP Coolant Liner Pr drops below the limit intermittently at 20 seconds but remains within limits thereafter.

Engine shutdown was after 203.88 for powerhead thermocouple.

901-666

902-120

902-132

Shutdown in Start.

#### 902-198

SAFD did not detect the failure.

Engine shutdown was after 8.44 for HPOP Accel.

#### 902-249

SAFD indicated cut at 378.54 for the following parameters:

HPFP Coolant Liner Pr

HPFP TDT A HPFP TDT B

Engine shutdown was after 450.58 for HPFP Accel. Engine systems estimates that \$14.5 million could have been saved by early shutdown.

#### 902-428

SAFD indicated no parameters out of limits but the engine went into electrical lockup and SAFD only monitors mainstage normal.

Engine shutdown was after 204.00 by CADS for loss of HPFP TDT redline.

#### 902-471

SAFD did not detect the failure. HPOP TDT B exceeded the lower limit intermittently from 82 to 139 seconds.

Engine shutdown was after 147.66 for powerhead thermocouple.

#### 902-562

Shutdown in Start.

### 904-044 - Pratt LOX Pump

SAFD did not detect the failure prior to shutdown. At 1270.66 SAFD indicated HPFP Coolant Liner Pr and HPOP Discharge Pr out of limits.

Engine shutdown was after 1270.70 for MCC Pc.

### 904-145 - Pratt LOX Pump

SAFD indicated cut at 241.06 for the following parameters:

HPFP Discharge Pr HPOP Discharge Pr HPOP PBP Discharge Pr

Engine shutdown was after 241.10 for HPOP Accel.

#### 3.2.2 Other Failures

The "other failures" group included 29 tests. Of these, 5 were missing too many parameters, were missing critical data items, or shut down in start. Of the remaining 24 other failures, SAFD indicated cut in 4 tests prior to shutdown. No analysis has been done to assess the results of these tests. Table V contains a summary of the testing and Appendix B contains plots for the out of limit parameters.

#### 3.2.3 Good Tests

The "good tests" group included 268 tests. Of these, 95 were Rocketdyne only engines with nominal CCV scheduling, 47 had PW LOX pumps with nominal CCV scheduling, and 126 had PW LOX pumps with modified CCV scheduling. Only one "good" test resulted in a cut being signaled by

SAFD. This may actually be a bad test and will be reviewed with engine systems. The following paragraphs will attempt explanation of those tests with parameters indicating out of limits.

### 3.2.3.1 Rocketdyne Pumps and Nominal CCV

There were 95 tests with Rocketdyne HPOP and HPFP pumps and using the nominal CCV schedule. Seven terminated prior to SAFD activation or were missing too much data. There was one SAFD cut which appears valid and will be reviewed by engine systems. There were parameters out of limits on some of the tests. The tests having parameters out of limits are listed below with an explanation of the out of limits parameters. Table VI contains a summary of the testing and Appendix C1 contains plots for the out of limit parameters.

#### 750-168

HPFP Balance Cavity Pr

Parameter drifts low and out of limits as though it's failing but then recovers. Since the algorithm had readjusted to the lower value during the throttling, the parameter goes out of limits when it recovers.

#### 750-291

MCC Pc

Parameter spiked at the time of the power failure. May need to increase the limits although other tests with power failures don't seem to have the problem.

#### 750-294

Pc Ref bad in data file. Test not valid for SAFD.

901-307 This test registered a cut. It is being investigated.

#### HPFP TDT A

Parameter shifts downward at about 20 seconds and again at about 60 seconds. The second shift causes it to go out of limits.

#### HPFP TDT B

Parameter continues decreasing even after throttling stopped. Eventually it exceeds the lower limit at about 50 seconds.

#### LPOP Discharge Pr

Parameter shifts downward and out of limits at about 17 seconds.

#### 901-346

FPOV Pos

Parameter turns downward after throttle up and drops below lower limit. It then increases back to nominal. At about 375 seconds it again shifts downward and intermittently exceeds the lower limit.

SAFD Final Report 22 December 1995

#### LPFP Shaft Sp

Parameter shifts upward at about 300 seconds. At about 383 seconds a spike exceeds the upper limit.

#### MCC Liner Cavity Pr

Parameter drifts upward during test. On all other engines this parameter remains constant and below zero.

#### 901-433

Most parameters disqualified because inlet pressures not available. Test not usable for SAFD evaluation.

#### 901-579

Disqualified parameters

Disqualified due to LOX inlex pressure being disqualified.

Out of limit parameters

Out of limits due to shift in mixture ratio.

#### 901-655

Disqualified parameters

Appears to be channel A failure.

HPFP Accel

Out of limits.

#### 901-662

Not a problem. Pc Ref bad in data file after 75 seconds.

#### 902-248

HPFP Coolant Liner Pr

Parameter drifts toward upper limit from 20 to 50 seconds. Intermittently out of limits for remainder of test.

#### HPOP IMSL Pr

Parameter levels off very early in test begins to climb again at about 300 seconds. This behavior differs from other Rocketdyne pumps.

#### 902-587

HPFP Balance Cavity Pr

Parameter noisier than normal and drifts up between 75 and 165 seconds.

#### 902-589

#### HPOP IMSL Pr

Parameter increases faster than expected and exceeds the uppper limit. It also levels off earlier than expected.

902-596

HPOP PBP Discharge Pr

Parameter noisy between 35 and 63 seconds. Spikes past lower limit for one cycle at 39 seconds.

### 3.2.3.2 Pratt LOX Pumps and Nominal CCV

There were 46 tests with a Rocketdyne HPFP and a Pratt HPOP and using the nominal CCV schedule. One test had bad data. Although there were no unexpected cuts, there were parameters out of limits on some of the tests. The tests having parameters out of limits are listed below with an explanation of the out of limits parameters. Table VII contains a summary of the testing and Appendix C2 contains plots for the out of limit parameters.

904-162

**HPOP SSC Pr** 

Parameter behaves erratically from the beginning of the test.

904-165

HPOP SSC Pr

Parameter begins erratic behavior at about 240 seconds.

904-171

**FPOV Pos** 

Parameter continues to climb after throttling at about 400 seconds.

904-172

**FPOV Pos** 

Parameter drifts upward during test and finally exceeds upper limit at about 710 seconds. Returns to within limits at 784 seconds.

904-173

**FPOV Pos** 

Parameter drifts upward during test and finally exceeds upper limit at about 701 seconds. It breaks the limit three additional times between 701 and 750 seconds.

904-174

**HPOP SSC Pr** 

Parameter drifts upward faster than normal and exceeds the upper limit.

904-180

HPFP Accel

Parameter broke upper limit for one cycle at 371.16. Engine status was toggling between normal mainstage and thrust limiting.

### 3.2.3.3 Pratt LOX Pumps and Modified CCV

There were 126 tests with a Rocketdyne HPFP and a Pratt HPOP and using the modified CCV schedule. Three shutdown prior to SAFD activation. Although there were no unexpected cuts, there were parameters out of limits on some of the tests. The tests having parameters out of limits are listed below with an explanation of the out of limits parameters. Table VIII contains a summary of the testing and Appendix C3 contains plots for the out of limit parameters.

#### 901-723

#### HPFP TDT A

Parameter drifts toward upper limit beginning at about 170 seconds and exceeds the upper limit at 245 and 251 seconds. It continues at the upper edge of the band for the remainder of the test.

#### HPOP IMSL A

Parameter climbs faster than normal at mainstage entry, then continues to rise and exceeds the upper limit at 112 seconds. It continues upward until about 180 seconds when it levels off. This pattern occurs in other Pratt LOX pumps but most settle out early and remain flat for the rest of the test. The phenomena is more pronounced in Rocketdyne LOX pumps.

#### MCC Pc

A spike exceeding the upper limit appears in the data at approximately 650 seconds. Data recording or post test data reduction problems are assumed to be the cause.

#### 901-772

#### HPOP IMSL A

Parameter dips below lower limit between 341 and 386. This was a special test for HPOP ISML Pressure.

#### 901-789

HPFP Accel

Parameter spikes over the upper limit at 509 seconds.

#### 901-809

#### HPFP Accel

Parameter slowly drifts up until it exceeds the limit. It returns in limits when the engine is throttled at about 430 seconds.

#### 901-816

HPFP Discharge Pr

Parameter continued toward upper limit after start and remained there until 125 seconds when it returned to normal.

#### HPOP TDT B

Parameter continued toward upper limit after start and intermittently exceeded the limit until throttling at 140 seconds. This has been seen in other Pratt LOX pumps and can be handled by adaptation data.

#### 904-196

#### LPFP Shaft Sp

Parameter exhibits a downward spike at 363 seconds and exceeds the lower limit during the spike. The parameter spikes downward again at about 425 seconds and is disqualified. Instrumentation, data recording, or post test data reduction problems are assumed to be the cause. Hydraulic lockup occurred at 425 seconds.

#### 904-201

#### HPFP TDT A

Parameter appears noisier than normal (compare to 901-723) and continues to drift upward until about 60 seconds. Spikes exceed the upper limit 6 times during the test with the longest duration being 160ms.

#### 904-205

#### HPFP TDT A

Parameter appears noisier than normal (compare to 901-723). One spike exceeds the upper limit for 40 ms at 433 seconds. There is also an unexplained rise in the temperature at 170 seconds.

#### 904-207

#### HPFP TDT A

Parameter drifts upward at 117 seconds and intermittently exceeds the upper limit between 187 and 423 seconds.

#### HPOP SSC Pr

Parameter drift accelerates upward at 95 seconds and parameter exceeds the upper limit until parameter levels off and limits "catch up" to it.

#### 904-219

#### HPFP TDT A

Parameter begins to climb at 207 seconds exceeds the upper limit and returns to normal at 377 seconds.

#### 904-220

HPFP TDT A

SAFD Final Report 22 December 1995

Parameter behaves same as in 904-219 from 117 to 377 seconds and again from 417 to 527 seconds.

#### 904-227

#### HPFP Coolant Liner Pr

Parameter becomes erratic after 130 seconds and spikes above upper limit at 154 seconds. Test had IEA failure.

#### 904-228

#### All Parameters

Anomalous behavior due to control stability test.

#### 904-233

#### All Parameters

Anomalous behavior due to mixture ratio excursions.

#### 904-234

#### HPFP TDT A

Parameter decreases after throttle at 10 seconds until about 55 seconds. This behavior has been noted on some engines with both Pratt pumps.

#### All Other Parameters

Anomalous behavior due to mixture ratio excursions.

#### 904-235

#### HPFP TDT A

Parameter similar to that of 904-234. Intermittently breaks lower limit from 56 to 57 seconds. Hydraulic lockup occurred at 210 seconds.

#### 904-236

#### HPFP TDT B

Parameter decreases from about 8 seconds until about 25 seconds. It drops below the lower limit between 21 and 37 seconds. An unexplained increase in temperature occurs at about 130 seconds.

#### 904-242

#### HPFP TDT B

Parameter is very erratic for entire test.

#### 904-243

#### HPFP TDT B

Parameter is very erratic during early part of test and generally declines from 15 seconds until throttle at 35 seconds. Breaks the lower limit for about 1/2 second at 35 seconds.

#### 904-244

HPOP PBP Discharge Pr

A spike exceeding the upper limit appears in the data at approximately 645 seconds. Instrumentation, data recording, or data reduction problems are assumed to be the cause.

#### 904-246

#### HPFP TDT B

Behavior similar to 904-243. Parameter dips between 15 seconds and 22 seconds. Breaks the lower limit for about 1/2 second at 36 seconds.

### 3.3 Simulation Lab Testing

No additional tests were run in the HSL during this reporting period.

### 3.4 Live Hot Fire Test Experience

In January 1995, the new algorithm was installed at the TTB and monitored tests TTB-054 through 059. The SAFD cutoff was active for test TTB-059. In December 1995 the unit was moved to A1 at SSC where it monitored tests 901-847 and 901-848.

#### 3.4.1 TTB Testing

- TTB-054 There were no anomalies noted for this test.
- TTB-055 Dynamic CCV rescheduling was used during this test. Since the SAFD adaptation data was not modified to accommodate this, some parameters indicated out of limits.
- TTB-056 Rocketdyne did not support this test.
- TTB-057 SAFD personnel began working directly with TTB personnel to derive limits and gains for the parameters. An erroneous entry in the parameter map file resulted in the wrong scaling coefficients being used for HPOP SSC Pr which caused it to be disqualified. There were no other anomalies.
- TTB-058 There were no anomalies noted for this test. This test included both mixture ratio and CCV excursions, but the SAFD adaptation data was modified to accommodate the off nominal conditions.
- TTB-059 There were no anomalies noted for this test. SAFD cutoff was active for this test.

#### 3.4.1 A1 Testing

901-847 - Two facility parameters (HPFP Bal. Cav. Pr and PBP Accel) were reversed in the parameter map causing them to indicate out of limits during the test. After correcting the file the test was rerun in simulate mode and no anomalies noted. Appendix D1 contains the plots for the rerun of this test.

901-848 - During the test the PBP accel signal was lost and the accel was disqualified. No other anomalies were noted. Appendix D2 contains the plots for this test.

### 3.5 Algorithm Analysis

In examining the theory behind the algorithm, the idea of using standard deviation for determining limits in modes 1 and 2 but not in modes 3, 4, and 5 seems logically inconsistent. The reasoning originally professed for using standard deviation was to accommodate differences in sensor noise among engines and tests. This argument should apply to modes 3, 4, and 5 if it is appropriate for modes 1 and 2.

Even with the ability to change a parameter based on time, HPOP ISML Pr still presents a problem, particularly for Rocketdyne pumps. The limits have been expanded to accommodate this but this affects algorithm sensitivity.

The original requirements specified using 60% of the range of a sensor for rate qualification. Testing indicates that this rule of thumb does not always apply and the range qualification limit for some parameters have been changed. The range values for all parameters should be reevaluated with engine systems.

#### 3.6 Conclusions

Testing indicates that version 4.0 of the algorithm represents a significant improvement over previous versions. The new algorithm is less sensitive to changes in adaptation data and using "standardized" adaptation data is feasible. Testing indicates that the algorithm is suitable for test stand use but there are areas that can be improved. Areas for improvement include the adaptation data, sensor qualification, the method for determining limits in modes 3, 4, and 5, and the equations for predicting parameter values.

The "standard" adaptation data used for this testing can be improved. For example, HPOP IMSL Pr needs further work. Besides improving the existing adaptation data, additional "standard" data should be developed to handle off nominal operation such as electrical or hydraulic lockup,

SAFD Final Report 22 December 1995

mixture ratio changes, etc. as well as for other engine configurations, such as Block II engines.

Sensor qualification can also be improved. The sensor qualification does not completely guard against failures in the engine controller which can affect parameters, such as IE disqualification. Since some of the parameters are a single sensor rather than an average of qualified sensors, the SAFD algorithm can attempt to use the sensor values while the controller is in the process of disqualifying them. In addition to this potential problem, the 60% value used to rate qualify sensors does not appear to be the optimum for all parameters. Some have been changed based on test experience, but all should be evaluated to determine the best value. Note, however, that using the 5 sample running average and requiring multiple parameters out of limits for shutdown reduce the risk of erroneous shutdown due to failed sensors.

Although not confirmed by testing, analysis suggests that the logic that suggests using the standard deviation to modify the limits during modes 1 and 2 can be applied to modes 3, 4, and 5. This would make the limits calculated during these modes more logically consistent with those of modes 1 and 2. If the assumption is that this additional expansion of the limits for modes 1 and 2 accommodates parameter or sensor noise, then the same argument can be used for the other modes.

The equations used to derive the expected value for parameters do not always accurately reflect the behavior of the parameter. This is particularly apparent during throttling for some parameters. Since there is no provision for delay at the end of a throttle based on distance throttled, a compromise between the delay for a short throttle and the delay for a long throttle must be made. A more sophisticated method for deriving the expected values would improve algorithm reliability and make derivation of adaptation data easier.

The current algorithm appears adequate for test stand use and generating standardized adaptation data for specific engine configurations appears feasible. The improvements indicated are not necessary to use the algorithm but would make it more robust and easier to use.

#### 3.7 Recommendations

While the algorithm is adequate for test stand use, the areas for improvement listed above should be addressed as budget permits. Additionally, some formal procedure should be established to include engine systems personnel in the process of generating adaptation data.

### 4 Other Algorithms

No algorithms other than SAFD were tested during this period.

#### 5 Summary

Overall, the SAFD platform and algorithm performed well. The SAFD algorithm is acceptable for use on single engine stands monitoring production engines. Before using the current algorithm the following conditions must be considered:

- The algorithm should not be used on tests where mixture ratio excursions, CCV excursions, or other special off-nominal tests are planned. If it is used during these tests, the limits must be expanded to accommodate the shifts in the parameter values.
- If the engine is a configuration other than those tested here, adaptation data changes will be required.
- The algorithm will cease monitoring during modes other than Mainstage Normal (eg. Thrust Limiting, Electrical Lockup, Hydraulic Lockup).

Testing has proven valuable in assessing the strengths and weaknesses of the SAFD algorithm. Testing also identified several potential areas for improvement for the algorithm. Development on the algorithm should continue in order to address these areas of improvement.

Additional testing and analysis should be done to gain a better understanding of what parameters can provide indications of impending engine failure and what those indications are. NASA and Rocketdyne Engine Systems personnel should assist in evaluating the results of the testing and analysis.

In addition to testing and analyzing the SAFD algorithm, other available algorithms should be examined to determine whether ideas from several of the algorithms could be integrated to produce a superior solution.

Finally, before the algorithm is activated on a test stand, a formal procedure should be established that includes engine systems in the process of dfining the adaptation data.

#### 6 Acronyms

ATD Advanced Turbopump Design

DCU Digital Computer Unit

CADS Command And Data Simulator
CPU Computer Processing Unit
FPOV Fuel Preburner Oxidizer Valve

FY Fiscal Year

GMT Greenwich Mean Time

GOX Gaseous Oxygen HEX Heat Exchanger

HPFTP High Pressure Fuel Turbopump
HPOTP High Pressure Oxidizer Turbopump
HSL Hardware Simulation Laboratory

IE Input Electronics

ISP Intermediate Seal Purge

I/O Input/Output

LeRC Lewis Research Center

LOX Liquid Oxygen

LPFTP Low Pressure Fuel Turbopump
LPOTP Low Pressure Oxidizer Turbopump

MB Megabyte

MCC Pc Main Combustion Chamber Chamber Pressure

MHz Megahertz

MSFC Marshall Space Flight Center

NASA National Aeronautics and Space Administration

OE Output Electronics

OPOV Oxidizer Preburner Oxidizer Valve

PBP Preburner Pump
PID Parameter Identifier

SAFD System for Anomaly and Failure Detection

SIU Signal Interface Unit
SPR System Problem Report
SSC Secondary Seal Cavity
SSME Space Shuttle Main Engine
SSMEC Space Shuttle Main Engine
STA Special Task Assignment
TCG Time Code Generator

TDT Turbine Discharge Temperature

TTB Technology Test Bed

UTRC United Technologies Research Center

VDT Vehicle Data Table

## Table I Adaptation Data for Rocketdyne Pumps w/ Nominal CCV Schedule

```
/\star adaptation data using 10 samples from 750, 901, 902 RDB NC for gains
     for RD engines w/ nominal CCV schedule */
COLIMIT 3 /* data for safd_4 algorithm */
RPL 3006.0 /* pcref at 100% */
GOXVALVE
               500.0 /* <time>*/
     CLOSE
FUELVALVE
               500.0 /* <time>*/
     CLOSE
LPOP_INLET_PR
                200.0
     QUL
               0.0
      QLL
                120.0
     QRATE
LPFP_INLET_PR
                100.0
      QUL
                0.0
      QLL
                60.0
      QRATE
```

```
PARAM FPOV_POS norm CUTWEIGHT 1
                           105.0
       QUL
                           0.0
       OLL
                          20.0
       ORATE
                        2.0
      MODE1DWELL
      MODE 3ADWELL
      MODE3EDWELL .24
MODE4ADWELL 0
      MODE 4 ADWELL
                          0
      MODE 4 EDWELL
                          1.0
      MODE 5 DWELL
      MODE3CPCDELTA 100.0

MODE3DPCDELTA 101.0

MODE4CPCDELTA 100.0

MODE4DPCDELTA 101.0
       CHN
             SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
             LOXGAIN 0.01
FUELGAIN -.02
             LOXOFFST 0
             FUELOFFST 0
              TIMEGAIN 0
              TIMESTART 0
              TIMESTOP 0
             MODEOUL 105.0 MODEOLL 0.0
             MODEIUL 1.4
MODEILL 1.4
MODEISD 1.4
MODEIFACT 3.0
              MODE2UL 2.0
MODE2LL 2.0
              MODE2FACT 3.0
              MODE3GAIN 3.40
              MODE3S1UL 6.5
              MODE3S1LL 6.5
              MODE3S2UL 6.5
              MODE3S2LL 6.5
              MODE3S3UL 6.5
              MODE3S3LL 6.5
              MODE4GAIN -3.06
              MODE4S1UL 6.5
              MODE4S1LL 6.5
              MODE4S2UL 6.5
              MODE4S2LL 6.5
              MODE4S3UL 6.5
MODE4S3LL 6.5
```

```
PARAM FUEL_FLOW norm CUTWEIGHT 1
                         24000
      QUL
      QLL
                         14400
      ORATE
                         2.0
      MODE1DWELL
                         0.28
      MODE 3 ADWELL
                         0.12
      MODE 3EDWELL
                         0.28
      MODE 4ADWELL
                         0.12
      MODE 4 EDWELL
                         0.2
      MODE 5 DWELL
                         11.0
      MODE3CPCDELTA
                         101.0
      MODE3DPCDELTA
                         11.0
      MODE4CPCDELTA
                         101.0
      MODE4DPCDELTA
      CHN
             SAMPLEWIS 0.05 0.05 0.1 0.2 0.6
                         0
            LOXGAIN
                         -2.1
            FUELGAIN
                         0
             LOXOFFST
                         0
             FUELOFFST
                         0
             TIMEGAIN
             TIMESTART
                         0
                         0
             TIMESTOP
                         24000
             MODEOUL
             MODEOLL
                         0
                         250
             MODE1UL
                         250
             MODEILL
                         250
             MODE1SD
             MODE1FACT
                         3.0
                         350
             MODE 2UL
                          350
             MODE2LL
                         3.0
             MODE2FACT
                         1551
             MODE 3GAIN
             MODE3S1UL
                         1000
                         1000
             MODE3S1LL
                         1000
             MODE3S2UL
                         1000
             MODE3S2LL
             MODE3S3UL
                         1000
             MODE3S3LL
                         1000
             MODE 4GAIN
                          -1575
                          1000
             MODE 4S1UL
                          1000
             MODE 4S1LL
                          1000
             MODE 4S2UL
                          1000
             MODE4S2LL
                          1000
             MODE 4S3UL
                          1000
             MODE 453LL
```

```
HEX_BYPASS_MIX_INTERFACE_TEMP norm CUTWEIGHT 1
/*PARAM
                       500
     OUL
                       -300
     OLL
                       480
     ORATE
                       2.0
     MODE1DWELL
                       0.24
     MODE 3ADWELL
                      0.24
     MODE 3 EDWELL
                      0.24
     MODE 4 ADWELL
                      0.24
     MODE4EDWELL
                      0.2
     MODE 5 DWELL
     MODE3CPCDELTA 100.0

MODE3DPCDELTA 101.0

MODE4CPCDELTA 100.0

MODE4DPCDELTA 101.0
      CHN
           SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
           LOXGAIN -1.0
           FUELGAIN 0
           LOXOFFST 0
           FUELOFFST 0
                     0.
            TIMEGAIN
            TIMESTART 0
            TIMESTOP 0
                     500
           MODEOUL
                      -300
           MODEOLL
                     40.0
            MODE1UL
                     50.0
0
            MODELLL
            MODE1SD
            MODE1FACT 3.0
                      40.0
            MODE2UL
                       50.0
           MODE2LL
            MODE2FACT 3.0
            MODE3GAIN 0
            MODE3S1UL 0
            MODE3S1LL 0
            MODE3S2UL 0
            MODE3S2LL 0
            MODE3S3UL 0
            MODE3S3LL 0
            MODE4GAIN 0
            MODE4S1UL 0
            MODE4S1LL 0
            MODE4S2UL 0
            MODE4S2LL 0
            MODE4S3UL 0
            MODE4S3LL 0
```

```
HEX_VENTURI_DELTA_PRESSURE norm CUTWEIGHT 1
/*PARAM
                       500
     QUL
                       -500
     OLL
                       600
     QRATE
                      2.0
     MODE1DWELL
                      0.24
     MODE 3ADWELL
                     0.24
     MODE 3EDWELL
                      0.24
     MODE 4 ADWELL
                      0.24
     MODE 4EDWELL
                      0.2
     MODE 5 DWELL
     MODE3CPCDELTA 100.0 MODE3DPCDELTA 101.0
                      100.0
     MODE4CPCDELTA
                       101.0
     MODE4DPCDELTA
      CHN
            SAMPLEWTS 0.05 0.05 0.1 0.2
                                             0.6
           LOXGAIN -0.07 FUELGAIN 0
            LOXOFFST
                      0
            FUELOFFST
                        0
                        0
            TIMEGAIN
                        0
            TIMESTART
            TIMESTOP
                        0
                      500.0
            MODEOUL
                      -500.0
            MODEOLL
                      5.0
            MODE1UL
                      5.0
0
            MODE1LL
            MODE1SD
            MODE1FACT 3.0
                     5.0
5.0
            MODE2UL
            MODE2LL
            MODE2FACT 3.0
            MODE3GAIN 0
                      0
            MODE3S1UL
                       0
            MODE3S1LL
                       0
            MODE3S2UL
                       0
            MODE3S2LL
                      0
            MODE3S3UL
                      0
            MODE3S3LL
                      0
            MODE 4GAIN
                       0
            MODE 4S1UL
            MODE4S1LL
                       0
                       0
            MODE4S2UL
                        0
            MODE 4S2LL
                        0
            MODE 4S3UL
                        0
            MODE 4S3LL
```

| */<br>PARAM |                                                                | HPFTP_ACCEL                                                            | type2                                                                          | CUTW | EIGHT | 1   |     |
|-------------|----------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|------|-------|-----|-----|
|             | MODE 32<br>MODE 42<br>MODE 43<br>MODE 53<br>MODE 33<br>MODE 44 | EDWELL EDWELL DWELL CPCDELTA DPCDELTA                                  | 30<br>0<br>18<br>2.0<br>0.24<br>0.24<br>0.24<br>0.2<br>100.0<br>101.0<br>100.0 |      |       |     |     |
|             | · ·                                                            | SAMPLEWTS<br>LOXGAIN<br>FUELGAIN<br>LOXOFFST<br>FUELOFFST<br>PCREFLMTS | 0<br>0<br>0<br>0<br>65<br>90<br>100                                            | _    | 0.1   | 0.2 | 0.6 |

```
PARAM HPFTP_BALANCE_CAVITY_PRESSURE norm CUTWEIGHT 1
                      10000
     QUL
     QLL
                     4000
     QRATE
                     2.0
     MODE1DWELL
                     0.28
     MODE 3ADWELL
                     0.48
     MODE 3EDWELL
     MODE 4 ADWELL
                     0.28
                     0.24
     MODE 4 EDWELL
                     1.0
     MODE 5 DWELL
                     10.0
     MODE3CPCDELTA
                     11.0
     MODE3DPCDELTA
     MODE4CPCDELTA
                     10.0
                     11.0
     MODE4DPCDELTA
      CHN
           SAMPLEWIS 0.05 0.05 0.1 0.2 0.6
                     0
           LOXGAIN
           FUELGAIN
           LOXOFFST
                      0
                     0
           FUELOFFST
                      0
           TIMEGAIN
                     0
           TIMESTOP 0
10000.0
           TIMESTART
                     0
           MODEOLL
                   100
           MODEIUL
                   100
50
           MODEILL
           MODE1SD
           MODE1FACT 3.0
                    3.0
100
10
           MODE2UL
           MODE2LL
           MODE2FACT
                       3.0
                      425
           MODE3GAIN
                       400
           MODE3S1UL
                       400
            MODE3S1LL
                       400
            MODE3S2UL
                       400
            MODE3S2LL
            MODE3S3UL
                       400
            MODE3S3LL
                       400
            MODE 4GAIN
                       -424
                       400
            MODE4S1UL
                       400
            MODE4S1LL
                       400
            MODE4S2UL
            MODE4S2LL 400
            MODE4S3UL 400
            MODE4S3LL 400
```

```
PARAM HPFTP_COOLANT_LINER_PRESSURE norm CUTWEIGHT 1
                       7000
      QUL
                       1800
      QLL
                       4200
      QRATE
                      2.0
      MODE1DWELL
                      0.24
     MODE 3ADWELL
                      0.48
     MODE 3EDWELL
                      0.24
      MODE 4ADWELL
                      0.24
      MODE 4 EDWELL
                      1.0
      MODE 5 DWELL
                      11.0
      MODE3CPCDELTA
                      26.0
      MODE3DPCDELTA
                      11.0
      MODE4CPCDELTA
                       26.0
      MODE 4 DPCDELTA
      CHN
            SAMPLEWTS 0.05 0.05 0.1 0.2
                                             0.6
                       0
            LOXGAIN
                       0
            FUELGAIN
                        0
            LOXOFFST
                        0
            FUELOFFST
                        0
            TIMEGAIN
                        0
            TIMESTART
                        0
            TIMESTOP
                        7000
            MODEOUL
                        1800
            MODEOLL
                      75
            MODE1UL
                      75
            MODEILL
                        75
            MODE1SD
                        3.0
            MODELFACT
                        60
            MODE2UL
                        60
            MODE2LL
            MODE2FACT
                        3.0
            MODE3GAIN
                        333
                        95
            MODE3S1UL
                        500
            MODE3S1LL
                        500
            MODE3S2UL
                        500
            MODE3S2LL
            MODE3S3UL
                        500
                        500
            MODE3S3LL
            MODE 4GAIN
                        -344
            MODE4S1UL
                        500
                        500
            MODE 4S1LL
            MODE 4S2UL
                        500
            MODE4S2LL
                        500
            MODE4S3UL
                        500
                        500
            MODE4S3LL
```

```
PARAM HPFTP_DISCHARGE_PRESSURE norm CUTWEIGHT 1
                       9500
      QUL
      QLL
                       5700
      QRATE
                      2.0
     MODE1DWELL
                      0.28
     MODE 3ADWELL
                      0.36
     MODE 3EDWELL
                      0.36
     MODE 4ADWELL
                      0.24
      MODE 4 EDWELL
                      1.0
     MODE5DWELL
                     100.0
101.0
100.0
     MODE3CPCDELTA
     MODE3DPCDELTA
      MODE4CPCDELTA
      MODE4DPCDELTA
                       101.0
      CHN
            SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                       -0.25
            LOXGAIN
                      -0.2
            FUELGAIN
                      0
            LOXOFFST
                       0
            FUELOFFST
            TIMEGAIN
                        0
                        0
            TIMESTART
                        0
            TIMESTOP
                        9500
            MODEOUL
                        0
            MODEOLL
                        150
            MODE1UL
                        150
            MODE1LL
                        150
            MODE1SD
                        3.0
            MODE1FACT
                        80
            MODE2UL
                        80
            MODEZLL
            MODE2FACT
                        3.0
            MODE 3GAIN
                        608
                        850
            MODE3S1UL
                        850
            MODE3S1LL
                        850
            MODE3S2UL
                        850
            MODE3S2LL
            MODE3S3UL
                        850
                        850
            MODE3S3LL
                        -611
            MODE 4 GAIN
                        850
            MODE4S1UL
                        850
            MODE4S1LL
            MODE4S2UL
                        850
            MODE 4S2LL
                        850
                        850
            MODE4S3UL
                        850
            MODE4S3LL
```

```
PARAM HPFTP_SHAFT_SPEED norm CUTWEIGHT 1
                        45000
      QUL
      OLL
                        27000
      ORATE
                        2.0
      MODE1DWELL
                        0.24
      MODE 3ADWELL
                        0.24
      MODE 3EDWELL
                        0.24
      MODE 4 ADWELL
                        0.24
      MODE 4 EDWELL
                       1.0
      MODE 5 DWELL
     MODE3CPCDELTA 100.0

MODE3DPCDELTA 101.0

MODE4CPCDELTA 100.0

MODE4DPCDELTA 101.0
      CHN
            SAMPLEWIS 0.05 0.05 0.1 0.2 0.6
                      0
            LOXGAIN
                      -4.9
            FUELGAIN
                       0
            LOXOFFST
            FUELOFFST
                       0
                        0
            TIMEGAIN
            TIMESTART
                        0
                        0
            TIMESTOP
                       45000
            MODEOUL
            MODEOLL
                       0
                        400
            MODE1UL
                       400
            MODEILL
            MODE1SD
                        400
            MODE1FACT 3.0
                        300
            MODE2UL
                        300
            MODE2LL
            MODE2FACT 3.0
            MODE3GAIN 2050
            MODE3S1UL 2500
            MODE3S1LL 2500
             MODE3S2UL 2500
             MODE3S2LL 2500
             MODE3S3UL 2500
             MODE3S3LL 2500
             MODE4GAIN -2048
             MODE4S1JL 2500
             MODE4S1LL 2500
             MODE4S2UL 2500
             MODE4S2LL 2500
             MODE4S3UL 2500
             MODE4S3LL 2500
```

```
PARAM HPFTP_TURBINE_DIS_TEMP_CH_A norm CUTWEIGHT 1
                       2650
     QUL
                       810
     QLL
                       500
      QRATE
                      2.0
     MODE1DWELL
                      0.24
     MODE 3ADWELL
                      0.24
     MODE 3EDWELL
                      0.24
     MODE 4ADWELL
                      0.24
    MODE 4 EDWELL
                      1.0
     MODE5DWELL
     MODE3CPCDELTA 100.0
                      101.0
      MODE3DPCDELTA
                     100.0
      MODE4CPCDELTA
                       101.0
      MODE4DPCDELTA
      CHN
            SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                      0.0
            LOXGAIN
            FUELGAIN
                     -0.4
            LOXOFFST
                      0
            FUELOFFST
                       0
                       0
            TIMEGAIN
                        0
            TIMESTART
            TIMESTOP
                        2650
            MODEOUL
                      810
            MODEOLL
            MODEIUL
                       50
                       50
            MODEILL
                       50
            MODELSD
            MODE1FACT 3.0
                        60
            MODE 2UL
                        60
            MODE2LL
            MODE2FACT
                        3.0
                        50
            MODE3GAIN
                        200
            MODE 3S1UL
                        200
            MODE3S1LL
                        200
            MODE 3S2UL
                        200
            MODE3S2LL
                        200
            MODE3S3UL
                        200
            MODE3S3LL
                        -46
            MODE 4 GAIN
                        200
            MODE4S1UL
                        200
            MODE 4S1LL
                        200
            MODE4S2UL
                        200
            MODE4S2LL
                        200
            MODE4S3UL
                       200
            MODE 4S3LL
```

```
PARAM HPFTP_TURBINE_DIS_TEMP_CH_B norm CUTWEIGHT 1
                        2650
      QUL
                        810
      QLL
                        500
      ORATE
                        2.0
      MODE1DWELL
                        0.24
      MODE 3ADWELL
                        0.24
      MODE 3EDWELL
                        0.24
      MODE 4 ADWELL
                        0.24
      MODE 4 EDWELL
                        1.0
      MODE 5 DWELL
                        11.0
      MODE3CPCDELTA
      MODESCE CELTA

MODESDPCDELTA
                        26.0
      MODE4CPCDELTA
                        11.0
                        26.0
      MODE4DPCDELTA
      CHN
            SAMPLEWIS 0.05 0.05 0.1 0.2 C.6
                      0.0
            LOXGAIN
                        -0.4
            FUELGAIN
                        0
            LOXOFFST
                        0
            FUELOFFST
                        0
            TIMEGAIN
                        0
            TIMESTART
                        0
            TIMESTOP
                        2650
            MODEOUL
                        810
            MODEOLL
                        50
            MODE1UL
                        50
            MODELLL
            MODE1SD
                        50
            MODE1FACT 3.0
                        60
            MODE 2UL
                        60
            MODE2LL
            MODE2FACT
                         3.0
             MODE3GAIN 51
                        200
             MODE3S1UL
                         200
             MODE3S1LL
             MODE3S2UL
                         200
             MODE3S2LL
                        200
             MODE3S3UL
                        200
             MODE3S3LL
                        200
             MODE4GAIN
                        -44
             MODE4S1UL
                        200
             MODE 4S1LL
                        200
                        200
             MODE 4S2UL
                        200
             MODE4S2LL
             MODE4S3UL
                        200
                        200
             MODE 4S3LL
```

```
PARAM HPOTP_BOOST_PUMP_RADIAL_ACCEL type2 CUTWEIGHT 1
                      30
     QUL
                      0
     QLL
                      18
     QRATE
                      2.0
     MODE1DWELL
                      0.24
     MODE 3ADWELL
                      0.24
     MODE 3EDWELL
                      0.24
     MODE 4ADWELL
                      0.24
     MODE 4 EDWELL
                      0.2
     MODE 5 DWELL
                     100.0
     MODE3CPCDELTA
    MODE3DPCDELTA 101.0
                     100.0
     MODE4CPCDELTA
                      101.0
     MODE4DPCDELTA
      CHN
           SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                     0
           LOXGAIN
                    0
           FUELGAIN
                      0
           LOXOFFST
                      0
           FUELOFFST
                             5.5
           PCREFLMTS
                      65
                            7.0 0
8.0 0
9.0 0
                       90
                       100
                       104
                                 0
                       109
                             9.5
                             9.5
                       111
```

```
PARAM HPOTP_DISCHARGE_PRESSURE norm CUTWEIGHT 1
                      7000
      QUL
                       0
      QLL
                       3000
      QRATE
                      2.0
     MODE1DWELL
                      0.24
     MODE 3ADWELL
                      0.48
     MODE 3EDWELL
                     0.34
     MODE 4 ADWELL
                     0.24
     MODE 4 EDWELL
                      1.0
     MODE5DWELL
     MODE3CPCDELTA
                     16.0
                     101.0
     MODE3DPCDELTA
      MODE4CPCDELTA
                     101.0
      MODE4DPCDELTA
      CHN
           SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                     0
           LOXGAIN
            FUELGAIN
                     0
            LOXOFFST
            FUELOFFST
                       0
            TIMEGAIN
                       0
            TIMESTART
            TIMESTOP
                       7000
            MODEOUL
                       0
            MODE0LL
                       140
            MODEIUL
                      140
            MODEILL
                       140
            MODELSD
                     3.0
            MODE1FACT
                       55
            MODE 2UL
                       55
            MODE2LL
                      3.0
            MODE2FACT
            MODE3GAIN 434
                      450
            MODE3S1UL
                       450
            MODE3S1LL
                      450
            MODE 3S2UL
                       450
            MODE3S2LL
                      450
            MODE3S3UL
                      450
            MODE3S3LL
            MODE4GAIN -457
                      450
            MODE 4S1UL
            MODE4S1LL 450
                       450
            MODE 4S2UL
                       450
            MODE 4S2LL
                       450
            MODE4S3UL
            MODE4S3LL
                       450
```

```
PARAM HPOTP_IMSL_PURGE_PRESS norm CUTWEIGHT 1
                        650
      QUL
      QLL
                        200
      QRATE
      MODE1DWELL
                      2.0
                      0.24
      MODE 3 ADWELL
      MODE 3 EDWELL
                      0.24
      MODE 4 ADWELL
                      0.24
                      0.24
      MODE 4 EDWELL
                       0.2
      MODE 5 DWELL
                      100.0
      MODE3CPCDELTA
                      101.0
      MODE3DPCDELTA
                      100.0
      MODE4CPCDELTA
      MODE4DPCDELTA
                       101.0
      CHN
            SAMPLEWIS 0.05 0.05 0.1 0.2
                                              0.6
                      0
            LOXGAIN
            FUELGAIN
                        0
            LOXOFFST
                        0
            FUELOFFST
                        .2
            TIMEGAIN
                        7
            TIMESTART
                        250
            TIMESTOP
                        650.0
            MODEOUL
                        0
            MODE OLL
                        5.0
            MODE1UL
                        5.0
            MODE1LL
                        5.0
            MODE1SD
            MODE1FACT
                        3.0
            MODE 2UL
                        40.0
            MODE2LL
                        30.0
            MODE2FACT
                        3.0
            MODE3GAIN
                         3.14
                        22.0
            MODE3S1UL
                        22.0
            MODE3S1LL
                        22.0
            MODE 3S2UL
                        22.0
            MODE3S2LL
            MODE3S3UL
                        22.0
                        22.0
            MODE3S3LL
                        -4.92
            MODE 4 GAIN
                         22.0
            MODE4S1UL
                         22.0
            MODE4S1LL
            MODE 4 S 2 UL
                         22.0
                       22.0
            MODE4S2LL
                       22.0
            MODE 4S3UL
             MODE4S3LL
                       22.0
```

```
PARAM HPOTP_BOOST_PUMP_DIS_PRESSURE norm CUTWEIGHT 1
                        9500
      QUL
                        0
      QLL
                        4700
      QRATE
                        2.0
      MODE1DWELL
                       0.24
      MODE 3ADWELL
                      0.48
      MODE 3EDWELL
                       0.24
      MODE 4 ADWELL
      MODE 4 EDWELL
                       0.24
                       1.0
      MODE 5DWELL
                     16.0
101.0
16.0
      MODE3CPCDELTA
      MODE3DPCDELTA
      MODE4CPCDELTA
                        101.0
      MODE4DPCDELTA
      CHN
                        0.05 0.05 0.1 0.2 0.6
            SAMPLEWTS
                        -1.0
            LOXGAIN
                        0.2
            FUELGAIN
                        0
            LOXOFFST
            FUELOFFST
                        0
                        0
            TIMEGAIN
            TIMESTART
                         0
             TIMESTOP
                         0
                        9500
            MODEOUL
            MODEOLL
                        90
            MODELUL
                        90
             MODE1LL
                         90
             MODE1SD
                        3.0
             MODE1FACT
                        150
             MODE2UL
                         150
             MODE2LL
             MODE2FACT
                         3.0
                        791
             MODE3GAIN
             MODE3S1UL 1000
             MODE3S1LL 1000
MODE3S2UL 1000
                       1000
             MODE3S2LL
             MODE3S3UL
                       1000
-851
             MODE3S3LL
             MODE 4 GAIN
                        1000
             MODE4S1UL
                        1000
             MODE4S1LL
                        1000
             MODE4S2UL
                        1000
             MODE4S2LL
                        1000
             MODE4S3UL
                        1000
             MODE4S3LL
```

```
PARAM HPOTP_SEC_SEAL_CAVITY_PR type1 CUTWEIGHT 1
                        300
      QUL
                        4
      QLL
                        180
      QRATE
                        2.0
      MODE1DWELL
                        0.24
      MODE 3ADWELL
                        0.24
      MODE 3EDWELL
      MODE 4 ADWELL
                        0.24
      MODE4EDWELL
                        0.24
      MODE 5 DWELL
                        0.2
                        16.0
      MODE3CPCDELTA
      MODE3CFCDELTA
MODE3CPCDELTA
MODE4CPCDELTA
                        101.0
                        16.0
                        101.0
      MODE4DPCDELTA
      CHN
            SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                        0
            LOXGAIN
                        0
            FUELGAIN
            LOXOFFST
                        0
                        0,
            FUELOFFST
            TIMEGAIN
                        -.1
                        0
            TIMESTART
                        57
            TIMESTOP
                        300
            MODE OUL
                        4
            MODE0LL
                        3.0
            MODE1UL
                        3.0
            MODE1LL
                        3.0
            MODE1SD
            MODE1FACT 3.0
                       10
            MODE2UL
                        10
            MODE2LL
            MODE2FACT 3.0
            MODE3GAIN .478
                        20.0
            MODE3S1UL
            MODE3S1LL 20.0
            MODE3S2UL 20.0
            MODE3S2LL 20.0
            MODE3S3UL 20.0
            MODE3S3LL 20.0
            MODE4GAIN -.736
            MODE4S1UL 20.0
            MODE4S1LL 20.0
            MODE4S2UL 20.0
            MODE4S2LL 20.0
            MODE4S3UL 20.0
            MODE4S3LL 20.0
```

```
PARAM HPOTP_TURBINE_DIS_TEMP_CH_A norm CUTWEIGHT 1
                        2650
      QUL
                        810
      QLL
                        500
      QRATE
                        2.0
      MODE1DWELL
                        0.84
      MODE 3ADWELL
                        0.84
      MODE 3EDWELL
                        0.84
      MODE 4 ADWELL
      MODE4EDWELL
                        0.84
                        3.0
      MODE 5 DWELL
      MODE3CPCDELTA
                        100.0
                       101.0
      MODE3DPCDELTA
      MODE4CPCDELTA
                        100.0
      MODE4DPCDELTA
                        101.0
      CHN
                        0.05 0.05 0.1 0.2 0.6
            SAMPLEWTS
                        -0.45
            LOXGAIN
                        .3
            FUELGAIN
                         0
            LOXOFFST
                         0
            FUELOFFST
                         0
             TIMEGAIN
                         0
             TIMESTART
                         0
             TIMESTOP
                         2650
             MODEOUL
                         150
            MODEOLL
                        75
            MODEIUL
                        75
             MODE1LL
                        75
             MODE1SD
                        3.0
             MODE1FACT
                        100
             MODE 2UL
                         100
             MODE2LL
                        3.0
             MODE2FACT
                        56
             MODE3GAIN
                         350
             MODE3S1UL
                         350
             MODE3S1LL
                         350
             MODE3S2UL
                         350
             MODE3S2LL
                         350
             MODE3S3UL
                         350
             MODE3S3LL
                         -65
             MODE 4 GAIN
                         350
             MODE4S1UL
             MODE 4S1LL
                         350
             MODE4S2UL
                         350
                         350
             MODE4S2LL
                         350
             MODE 4S3UL
                         350
             MODE4S3LL
```

```
PARAM HPOTP_TURBINE_DIS_TEMP_CH_B norm CUTWEIGHT 1
                         2650
      QUL
                         810
      QLL
                         500
      QRATE
                         2.0
      MODE1DWELL
                        0.84
      MODE 3ADWELL
                        0.84
      MODE 3EDWELL
                        0.84
      MODE 4 ADWELL
                        0.84
      MODE 4 EDWELL
                         3.0
      MODE 5 DWELL
      MODE3CPCDELTA
                         100.0
                         101.0
      MODE3DPCDELTA
                         100.0
      MODE4CPCDELTA
                         101.0
      MODE4DPCDELTA
      CHN
                         0.05 0.05 0.1 0.2 0.6
            SAMPLEWTS
                         -0.45
            LOXGAIN
                         .3
            FUELGAIN
                         0
            LOXOFFST
                         0
            FUELOFFST
            TIMEGAIN
                         0
             TIMESTART
                         0
                         0
            TIMESTOP
                         2650
            MODEOUL
                         150
            MODEOLL
                         75
            MODE1UL
            MODE1LL
                         75
                         75
            MODE1SD
             MODE1FACT
                         3.0
                         100
             MODE2UL
                         100
             MODE2LL
                         3.0
             MODE2FACT
                         58
             MODE 3GAIN
                         350
             MODE3S1UL
             MODE3S1LL
                         350
                         350
             MODE3S2UL
                         350
             MODE3S2LL
             MODE3S3UL
                          350
                         350
             MODE3S3LL
             MODE 4GAIN
                          -66
                          350
             MODE 4S1UL
                          350
             MODE 4S1LL
             MODE4S2UL
                          350
             MODE4S2LL
                          350
                          350
             MODE 4S3UL
             MODE4S3LL
                          350
```

```
PARAM LPFTP_SHAFT_SPEED norm CUTWEIGHT 1
                        20000
      QUL
                        0
      QLL
                        12000
      QRATE
                        2.0
      MODE1DWELL
      MODE 3ADWELL
                       0.36
                       0.48
      MODE 3EDWELL
      MODE 4 ADWELL
                       0.36
                       0.24
      MODE 4 EDWELL
                        1.0
      MODE 5 DWELL
      MODE3CPCDELTA
                        16.0
      MODE3DPCDELTA
                        101.0
                        16.0
      MODE4CPCDELTA
                        101.0
      MODE4DPCDELTA
      CHN
                       0.05 0.05 0.1 0.2
                                                0.6
             SAMPLEWTS
                        -0.7
             LOXGAIN
                         -1.2
            FUELGAIN
                         0
             LOXOFFST
                         0
             FUELOFFST
                         0
             TIMEGAIN
                         0
             TIMESTART
                         0
             TIMESTOP
                         20000
             MODEOUL
                         0
             MODEOLL
                         225
             MODE1UL
                         225
             MODE1LL
                         225
             MODE1SD
             MODE1FACT
                         3.0
                         225
             MODE 2UL
                         225
             MODE 2LL
                         3.0
             MODE2FACT
                         647
             MODE3GAIN
                         1100
             MODE3S1UL
             MODE3S1LL
                         1100
                         1100
             MODE3S2UL
                         1100
             MODE3S2LL
                         1100
             MODE3S3UL
                         1100
             MODE3S3LL
                         -637
             MODE 4GAIN
             MODE4S1UL
                         1100
                         1100
             MODE4S1LL
                         1100
             MODE4S2UL
                         1100
             MODE4S2LL
             MODE4S3UL
                         1100
                         1100
             MODE4S3LL
```

```
PARAM LPGTP_PUMP_DISCHARGE_PRESSURE norm CUTWEIGHT 1
                       600
      QUL
                       0
      QLL
                       200
      QRATE
      MODE1DWELL
                       2.0
                      0.24
     MODE 3ADWELL
                      0.24
     MODE 3EDWELL
                      0.44
      MODE 4ADWELL
      MODE 4 EDWELL
                      0.24
      MODE5DWELL
                      0.4
                       100.0
      MODE3CPCDELTA
                       101.0
      MODE3DPCDELTA
                       100.0
      MODE4CPCDELTA
                       101.0
      MODE4DPCDELTA
      CHN
            SAMPLEWTS 0.05 0.05 0.1
                                              0.6
                                       0.2
                     0.05
0.85
0
            LOXGAIN
            FUELGAIN
            LOXOFFST
                       0
            FUELOFFST
                       0
                       0
            TIMEGAIN
                       0
            TIMESTART
                       0
            TIMESTOP
            MODEOUL
                       600
            MODECLL
                       0
                       10.0
            MODE1UL
                       10.0
            MODE1LL
                       10.0
            MODE1SD
            MODE1FACT 3.0
            MODE2UL 10.0
                       10.0
            MODE2LL
                      3.0
            MODE2FACT
                      14.9
            MODE3GAIN
                      40.0
            MODE3S1UL
                       40.0
            MODE3S1LL
                       40.0
            MODE3S2UL
                       40.0
            MODE3S2LL
            MODE3S3UL
                       40.0
            MODE3S3LL
                       40.0
            MODE4GAIN -14.3
            MODE4S1UL 40.0
                      40.0
            MODE4S1LL
            MODE4S2UL 40.0
            MODE4S2LL 40.0
            MODE4S3UL 40.0
            MODE4S3LL 40.0
```

```
PARAM MCC_PRESSURE norm CUTWEIGHT 1
                        3500
      QUL
                        0
      QLL
                        2100
      QRATE
                        2.0
      MODE1DWELL
                        0.24
      MODE 3ADWELL
      MODE 3EDWELL
                        0.48
                        0.14
      MODE 4 ADWELL
                        0.24
      MODE4EDWELL
                        0,.6
      MODE5DWELL
                        9.0
      MODE3CPCDELTA
                        26.0
      MODE3DPCDELTA
                        9.0
      MODE4CPCDELTA
                        26.0
      MODE4DPCDELTA
      CHN
                        0.05 0.05 0.1 0.2 0.6
            SAMPLEWTS
            LOXGAIN
                        0
            FUELGAIN
            LOXOFFST
                        0
            FUELOFFST
                        0
            TIMEGAIN
                         0
                         0
            TIMESTART
            TIMESTOP
                         0
                         3500
            MODEOUL
                         0
            MODEOLL
                         60
            MODE1UL
                         60
            MODEILL
                         60
            MODE1SD
            MODE1FACT
                         3.0
                         30
            MODE2UL
                         30
            MODE2LL
                         3.0
            MODE2FACT
                         293
            MODE3GAIN
                         350
            MODE3S1UL
                         350
            MODE3S1LL
                         350
            MODE3S2UL
                         350
             MODE3S2LL
                         350
             MODE3S3UL
                         350
             MODE3S3LL
                         -308
             MODE 4GAIN
                         350
             MODE4SlUL
                         350
             MODE4S1LL
                         350
             MODE 4S2UL
                         350
             MODE4S2LL
             MODE4S3UL
                         350
                         350
             MODE4S3LL
```

```
PARAM MCC_LINER_CAVITY_PRESSURE type1 CUTWEIGHT 1
                        100
      QUL
                        -100
      OLL
                        120
      ORATE
                        2.0
      MODE1DWELL
                       0.24
      MODE 3ADWELL
                       0.24
      MODE 3EDWELL
                       0.24
      MODE 4 ADWELL
                       0.24
      MODE4EDWELL
                      0.2
      MODE 5 DWELL
     MODE3CPCDELTA 100.0

MODE3DPCDELTA 101.0

MODE4CPCDELTA 100.0

MODE4DPCDELTA 101.0
      CHN
            SAMPLEWIS 0.05 0.05 0.1 0.2 0.6
            LOXGAIN 0
                      0
            FUELGAIN
                       0
            LOXOFFST
            FUELOFFST 0
            TIMEGAIN
                        0
            TIMESTART
            TIMESTOP
                       100.0
            MODEOUL
                      -100.0
            MODECLL
            MODE1UL
                       3.3
            MODELLL
                       0.6
                       3.3
            MODE1SD
            MODE1FACT 3.0
                       3.3
            MODE2UL
            MODE2LL
                       0.6
            MODE2FACT 3.0
            MODE3GAIN 0
            MODE3S1UL 3.3
            MODE3S1LL 3.3
            MODE3S2UL 3.3
                        3.3
            MODE3S2LL
            MODE3S3UL 3.3
            MODE3S3LL 3.3
            MODE4GAIN 0
            MODE4S1UL 3.3
            MODE4S1LL 3.3
            MODE4S2UL 3.3
            MODE4S2LL 3.3
            MODE4S3UL 3.3
            MODE4S3LL 3.3
```

```
PARAM OPOV_ACT_POSITION norm CUTWEIGHT 1
                                105
        QUL
                                0
        QLL
                               20
        QRATE
       MODE1DWELL 2.0
MODE3ADWELL 0
MODE3EDWELL .24
MODE4ADWELL 0
       MODE4EDWELL 0

MODE5DWELL 1.0

MODE3CPCDELTA 11.0

MODE3DPCDELTA 101.0

MODE4CPCDELTA 11.0

MODE4DPCDELTA 101.0
        CHN
                SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                LOXGAIN -0.02
FUELGAIN 0
                LOXOFFST 0
                FUELOFFST 0
                 TIMEGAIN 0
                 TIMESTART 0
                 TIMESTOP 0
                 MODEOUL 105
MODEOLL 0
                MODEIUL 3.0
MODEILL 3.0
MODEISD 3.0
MODEIFACT 3.0
                 MODE2UL 6.0
MODE2LL 6.0
                 MODE2LL
                 MODE2FACT 3.0
                 MODE3GAIN 3.46
                 MODE3S1UL 12.0
                 MODE3S1LL 12.0
                 MODE3S2UL 12.0
                 MODE3S2LL 12.0
                 MODE3S3UL 12.0
                 MODE3S3LL 12.0
                 MODE4GAIN -3.47
                 MODE4S1UL 12.0
                 MODE4S1LL 12.0
                 MODE4S1LL 12.0

MODE4S2LL 12.0

MODE4S3UL 12.0

MODE4S3LL 12.0
```

## Table II Adaptation Data for Pratt LOX Pump w/ Nominal CCV Schedule

```
/\star adaptation data using 10 samples from 904 NC for gains
  for PW LOX pump w/ nominal CCV schedule */
COLIMIT 3 /* data for safd_4 algorithm */
RPL 3006.0 /* pcref at 100% */
GOXVALVE
             500.0 /* <time>*/
  CLOSE
FUELVALVE
             500.0 /* <time>*/
   CLOSE
LPOP_INLET_PR
              200.0
   QŪL
   QLL
             0.0
             120.0
   QRATE
LPFP_INLET_PR
QUL 100.0
             0.0
   QLL
   QRATE
             60.0
```

```
FPOV_POS norm CUTWEIGHT 1
PARAM
                    105.0
   QUL
                    0.0
   QLL
                    20.0
   QRATE
                    2.0
   MODE1DWELL
  MODE 3ADWELL
  MODE 3EDWELL
                    .24
   MODE 4 ADWELL
                   0
   MODE 4EDWELL
                   1.0
   MODE 5 DWELL
   MODE3CPCDELTA
                   100.0
                  101.0
   MODE3DPCDELTA
   MODE4CPCDELTA
   MODE4DPCDELTA
                    101.0
   CHN
         SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                   0.01
         LOXGAIN
                  -.02
         FUELGAIN
                   0
         LOXOFFST
                   0
         FUELOFFST
                     0
         TIMEGAIN
         TIMESTART
                     0
                    0
         TIMESTOP
                     105.0
         MODE OUL
                    0.0
         MODEOLL
                    1.4
         MODELUL
                    1.4
         MODE1LL
                     1.4
         MODE1SD
                    3.0
         MODE1FACT
                    2.0
         MODE2UL
                     2.0
         MODE2LL
                    3.0
         MODE2FACT
                   4.35
         MODE3GAIN
                    6.5
         MODE3S1UL
                     6.5
         MODE3S1LL
                    6.5
         MODE3S2UL
         MODE3S2LL
                     6.5
                     6.5
         MODE3S3UL
                     6.5
         MODE3S3LL
         MODE4GAIN -4.23
                   6.5
         MODE4S1UL
         MODE4S1LL 6.5
         MODE4S2UL 6.5
MODE4S2LL 6.5
MODE4S3UL 6.5
         MODE4S3LL 6.5
```

```
PARAM FUEL_FLOW norm CUTWEIGHT 1
                   24000
  QUL
  QLL
                   14400
  QRATE
  MODE1DWELL
                   2.0
                   0.28
  MODE 3ADWELL
                   0.12
  MODE 3EDWELL
  MODE 4ADWELL
                   0.28
                   0.12
  MODE 4 EDWELL
                   0.2
  MODE 5 DWELL
  MODE3CPCDELTA
                  11.0
  MODE3DPCDELTA
                  101.0
  MODE4CPCDELTA
                  11.0
  MODE4DPCDELTA
                   101.0
  CHN
        SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                 0
        LOXGAIN
                 -2.1
        FUELGAIN
                  0
        LOXOFFST
        FUELOFFST 0
                   0
        TIMEGAIN
        TIMESTART
                   0
                   0
        TIMESTOP
                   24000
        MODEQUL
        MODEOLL
                  0
                  250
        MODE1UL
                   250
        MODE1LL
        MODE1SD
                   250
        MODE1FACT 3.0
        MODE2UL
                   350
        MODE2LL
                   350
        MODE2FACT 3.0
        MODE3GAIN
                  1513
        MODE3S1UL
                  1000
        MODE3S1LL
                  1000
        MODE3S2UL
                  1000
        MODE3S2LL
                  1000
        MODE3S3UL
                  1000
        MODE3S3LL
                  1000
        MODE 4GAIN
                   -1608
                  1000
        MODE4S1UL
                  1000
        MODE4S1LL
                  1000
        MODE4S2UL
                  1000
        MODE4S2LL
        MODE4S3UL
                  1000
        MODE4S3LL
                  1000
```

```
/*PARAM HEX_BYPASS_MIX_INTERFACE_TEMP norm. CUTWEIGHT 1
                      500
   QUL
                      -300
   QLL
                      480
   QRATE
   MODE1DWELL
                      2.0
                      0.24
  MODE 3ADWELL
  MODE 3EDWELL
                      0.24
                      0.24
  MODE 4 ADWELL
                      0.24
   MODE 4 EDWELL
                      0.2
   MODE 5 DWELL
                      100.0
   MODE3CPCDELTA
                      101.0
   MODE3DPCDELTA
   MODE4CPCDELTA
                      100.0
   MODE4DPCDELTA
                      101.0
   CHN
                      0.05 0.05 0.1 0.2 0.6
         SAMPLEWTS
                      -1.0
         LOXGAIN
         FUELGAIN
                      0
                      0
         LOXOFFST
                      0
         FUELOFFST
                      0
         TIMEGAIN
         TIMESTART
                      0
         TIMESTOP
                      0
                      500
         MODEOUL
                      -300
         MODEOLL
                      40.0
         MODE1UL
                      50.0
         MODE1LL
                      0
         MODE1SD
         MODE1FACT
                      3.0
                      40.0
         MODE 2UL
         MODE2LL
                      50.0
         MODE2FACT
                      3.0
                      0
         MODE 3GAIN
         MODE3S1UL
                      0
         MODE3S1LL
                      0
         MODE3S2UL
                      0
         MODE3S2LL
                      0
                      0
         MODE3S3UL
         MODE3S3LL
                      0
         MODE 4 GAIN
                      0
         MODE4S1UL
                      0
         MODE4S1LL
                      0
         MODE4S2UL
                      0
                      0
         MODE4S2LL
         MODE4S3UL
                      0
         MODE4S3LL
                      0
```

```
/*PARAM HEX_VENTURI_DELTA_PRESSURE norm CUTWEIGHT 1
                    500
   QUL
                    -500
   QLL
                    600
   QRATE
                    2.0
  MODE1DWELL
                    0.24
  MODE 3ADWELL
                    0.24
  MODE 3EDWELL
                    0.24
  MODE 4 ADWELL
  MODE4EDWELL
                    0.24
  MODE 5 DWELL
                    0.2
                    100.0
  MODE3CPCDELTA
                    101.0
  MODE3DPCDELTA
                    100.0
   MODE4CPCDELTA
                    101.0
   MODE4DPCDELTA
   CHN
         SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                    -0.07
        LOXGAIN
        FUELGAIN
                    0
        LOXOFFST
                    0
         FUELOFFST
                    0
                    0
        TIMEGAIN
        TIMESTART
                    0
                    0
         TIMESTOP
                    500.0
         MODEOUL
                    -500.0
         MODEOLL
                    5.0
         MODE1UL
                    5.0
         MODE1LL
                    0
         MODE1SD
         MODE1FACT
                    3.0
                    5.0
         MODE2UL
                    5.0
         MODE2LL
                    3.0
         MODE2FACT
         MODE3GAIN 0
         MODE3S1UL 0
                    0
         MODE3S1LL
                    0
         MODE3S2UL
         MODE3S2LL
                    0
         MODE3S3UL
                    0
         MODE3S3LL
                    0
         MODE 4GAIN
                    0
         MODE4S1UL 0
         MODE4S1LL 0
         MODE4S2UL 0
         MODE4S2LL 0
        MODE 4S3UL
        MODE 4S3LL
```

| */<br>PARAM                                              | HPFTP_ACCEL                                                            | type2                                                                          | CUT:                     | VEIGHT | 1   |     |
|----------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------|--------|-----|-----|
| MODE 3<br>MODE 4<br>MODE 5<br>MODE 3<br>MODE 3<br>MODE 3 | DWELL ADWELL EDWELL EDWELL DWELL CPCDELTA DPCDELTA                     | 30<br>0<br>18<br>2.0<br>0.24<br>0.24<br>0.24<br>0.2<br>100.0<br>101.0<br>100.0 |                          |        |     |     |
| CHN                                                      | SAMPLEWTS<br>LOXGAIN<br>FUELGAIN<br>LOXOFFST<br>FUELOFFST<br>PCREFIMTS | 0.05<br>0<br>0<br>0<br>65<br>90<br>100<br>104<br>109<br>111                    | 8.0<br>8.5<br>9.0<br>9.5 | 0.1    | 0.2 | 0.6 |

```
HPFTP_BALANCE_CAVITY_PRESSURE norm CUTWEIGHT 1
PARAM
                    10000
   QUL
                     0
   QLL
                    4000
   QRATE
                   2.0
  MODE1DWELL
                   0.28
  MODE 3ADWELL
                   0.48
  MODE 3EDWELL
                   0.28
  MODE 4 ADWELL
                   0.24
  MODE 4 EDWELL
  MODE3CPCDELTA 10.0
MODE3DPCDELTA
                    10.0
  MODE4CPCDELTA
                    11.0
   MODE4DPCDELTA
   CHN
         SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                   0
         LOXGAIN
                   0
        FUELGAIN
                    0
         LOXOFFST
         FUELOFFST
                   0
         TIMEGAIN
                     0
         TIMESTART
                     0
         TIMESTOP
                    0
        MODEOUL 10000.0 MODEOLL 0
        MODEIUL 100
MODEILL 100
MODEISD 50
MODEIFACT 3.0
                   100
         MODE2UL
                    100
         MODE2LL
         MODE2FACT 3.0
         MODE3GAIN 423.9
         MODE3S1UL 300
         MODE3S1LL
                    300
         MODE3S2UL
                    300
         MODE3S2LL
         MODE3S3UL
                    300
         MODE3S3LL 300
         MODE4GAIN -464.5
         MODE4S1UL
                    300
         MODE4S1LL
                    300
         MODE 4S2UL
                    300
         MODE4S2LL
         MODE 4S3UL
                    300
                    300
         MODE 4S3LL
```

| - PARAM HPFTP_COCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANT_LIN                                                                                                                                                                 | ER_PRE | SSURE | norm | CUTWEIGHT 1 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------|-------------|
| QUL QLL QRATE MODE1DWELL MODE3ADWELL MODE3EDWELL MODE4ADWELL MODE4EDWELL MODE5DWELL MODE3CPCDELTA MODE3CPCDELTA MODE4CPCDELTA MODE4DPCDELTA                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7000<br>1800<br>4200<br>2.0<br>0.24<br>0.48<br>0.24<br>1.0<br>11.0<br>26.0                                                                                              |        |       |      |             |
| SAMPLEWTS LOXGAIN FUELGAIN LOXOFFST FUELOFFST TIMEGAIN TIMESTART TIMESTOP MODEOUL MODEOUL MODEIUL MODEILL MODEILL MODEILL MODEISD MODESSUL MODESSAIN MODESSAIN MODESSUL | 0.05<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1800<br>75<br>75<br>75<br>3.0<br>60<br>3.0<br>318<br>95<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 0.05   | 0.1   | 0.2  | 0.6         |

```
PARAM HPFTP_DISCHARGE_PRESSURE norm CUTWEIGHT 1
                     9500
   QUL
                     0
   QLL
                     5700
   QRATE
   MODE1DWELL
                     2.0
                    0.28
   MODE 3ADWELL
   MODE 3EDWELL
                    0.36
   MODE 4 ADWELL
                    0.36
                    0.24
   MODE 4 EDWELL
                    1.0
   MODE5DWELL
                   100.0
101.0
100.0
   MODE3CPCDELTA
   MODE3DPCDELTA
   MODE4CPCDELTA
   MODE4DPCDELTA
                     101.0
   CHN
         SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                   -0.25
         LOXGAIN
                    -0.2
         FUELGAIN
         LOXOFFST
         FUELOFFST
                     0
         TIMEGAIN
                     0
         TIMESTART
         TIMESTOP
                     9500
         MODEOUL
                     0
         MODEOLL
                     150
         MODELUL
         MODE1LL
                     150
                     150
         MODE1SD
         MODE1FACT
                     3.0
                     80
         MODE 2UL
         MODE2LL
                     80
         MODE2FACT
                     3.0
                   550
         MODE 3GAIN
                    850
         MODE3S1UL
                     850
         MODE3S1LL
                     850
         MODE3S2UL
                     850
         MODE3S2LL
                     850
         MODE3S3UL
                     850
         MODE3S3LL
                     -605
         MODE 4 GAIN
                     850
         MODE 4S1UL
         MODE4S1LL
                     850
         MODE 4 S 2 UL
                     850
                     850
         MODE4S2LL
         MODE4S3UL 850
                     850
         MODE4S3LL
```

```
HPFTP_SHAFT_SPEED norm CUTWEIGHT 1
PARAM
                      45000
   QUL
                     0
   QLL
                     27000
   QRATE
                     2.0
   MODE1DWELL
                    0.24
   MODE 3ADWELL
                    0.24
   MODE 3EDWELL
   MODE 4 ADWELL
                     0.24
                     0.24
   MODE 4 EDWELL
                     1.0
   MODE 5 DWELL
                     100.0
   MODE3CPCDELTA
                     101.0
   MODE3DPCDELTA
                      100.0
   MODE4CPCDELTA
   MODE4DPCDELTA
                      101.0
   CHN
                      0.05 0.05 0.1 0.2 0.6
         SAMPLEWTS
         LOXGAIN
                      0
         FUELGAIN
                     -4.9
         LOXOFFST
                      0
         FUELOFFST
                      0
                      0
         TIMEGAIN
         TIMESTART
                      0
                      0
         TIMESTOP
                      45000
         MODEOUL
                      0
         MODEOLL
                      400
         MODEIUL
         MODE1LL
                      400
                      400
         MODE1SD
         MODE1FACT
                      3.0
                      300
         MODE 2UL
                      300
         MODE2LL
          MODE2FACT
                      3.0
          MODE 3GAIN
                      2047
                      2500
          MODE3S1UL
                      2500
          MODE3S1LL
                      2500
          MODE3S2UL
                      2500
          MODE3S2LL
          MODE3S3UL
                      2500
                      2500
          MODE3S3LL
                      -2199
          MODE 4GAIN
                      2500
          MODE4S1UL
                      2500
          MODE4S1LL
                      2500
          MODE 4S2UL
          MODE 4S2LL
                      2500
                      2500
          MODE4S3UL
                      2500
          MODE4S3LL
```

```
HPFTP_TURBINE_DIS_TEMP_CH_A norm CUTWEIGHT 1
PARAM
                      2650
   QUL
                      810
   OLL
                      500
   QRATE
   MODE1DWELL
                      2.0
                     0.24
   MODE 3ADWELL
                      0.24
   MODE 3EDWELL
                      0.24
   MODE 4 ADWELL
                     0.24
   MODE 4EDWELL
                      1.0
   MODE 5 DWELL
                      100.0
   MODE3CPCDELTA
                      101.0
   MODE3DPCDELTA
   MODE4CPCDELTA
                      100.0
   MODE 4DPCDELTA
                      101.0
   CHN
         SAMPLEWTS 0.05 0.05 0.1 0.2
                                             0.6
                    0.0
         LOXGAIN
                     -0.4
         FUELGAIN
         LOXOFFST
                      0
         FUELOFFST
                      0
                      0
         TIMEGAIN
                      0
         TIMESTART
         TIMESTOP
                      0
                      2650
         MODEOUL
                      810
         MODEOLL
         MODELUL
                      50
                      50
         MODELLL
                      50
         MODE1SD
         MODE1FACT
                      3.0
                      60
         MODE 2UL
                      60
         MODE2LL
         MODE2FACT
                      3.0
         MODE3GAIN
                      58
                      200
         MODE3S1UL
         MODE3S1LL
                      200
         MODE3S2UL
                      200
                      200
         MODE3S2LL
                      200
         MODE3S3UL
                      200
          MODE3S3LL
                      -61
          MODE 4 GAIN
                      200
          MODE 4S1UL
          MODE 4 SILL
                      200
                      200
          MODE 4S2UL
                      200
          MODE 4S2LL
                      200
          MODE 4S3UL
          MODE4S3LL
                      200
```

```
HPFTP_TURBINE_DIS_TEMP_CH_B norm CUTWEIGHT 1
PARAM
                     2650
   QUL
                     810
   QLL
                     500
   QRATE
   MODE1DWELL
                     2.0
   MODE 3ADWELL
                     0.24
                     0.24
  MODE 3EDWELL
  MODE 4ADWELL
                     0.24
                     0.24
   MODE 4 EDWELL
                     1.0
   MODE 5 DWELL
                     11.0
   MODE3CPCDELTA
   MODE3DPCDELTA
                     26.0
   MODE4CPCDELTA
                     11.0
   MODE4DPCDELTA
                     26.0
   CHN
         SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                    0.0
         LOXGAIN
         FUELGAIN
                     -0.4
                     0
         LOXOFFST
         FUELOFFST
                     0
         TIMEGAIN
                     0
         TIMESTART
                     0
         TIMESTOP
                     0
                     2650
         MODEOUL
                     810
         MODEOLL
                     50
         MODE1UL
         MODE1LL
                     50
         MODE1SD
                      50
         MODE1FACT
                      3.0
         MODE 2UL
                      60
                      60
         MODE2LL
         MODE2FACT
                      3.0
                      69
         MODE3GAIN
                      200
         MODE3S1UL
                      200
         MODE3S1LL
                      200
         MODE3S2UL
                      200
         MODE3S2LL
                      200
         MODE3S3UL
                      200
         MODE3S3LL
                      -71
         MODE 4 GAIN
         MODE4S1UL
                      200
         MODE4S1LL
                      200
                      200
         MODE4S2UL
                      200
         MODE4S2LL
                      200
         MODE 4S3UL
                      200
         MODE4S3LL
```

| PARAM                                                           | HPOTP_BOOST                                                            | _PUMP_E                      | RADIAL_    | ACCEL | type2 | CUTWEIGHT 1 |
|-----------------------------------------------------------------|------------------------------------------------------------------------|------------------------------|------------|-------|-------|-------------|
| MODE 3. MODE 4. MODE 4. MODE 5. MODE 3. MODE 3. MODE 3. MODE 4. | ADWELL EDWELL ADWELL DWELL CPCDELTA DPCDELTA CPCDELTA                  | 101.0                        |            |       |       |             |
| CHN                                                             | SAMPLEWTS<br>LOXGAIN<br>FUELGAIN<br>LOXOFFST<br>FUELOFFST<br>PCREFLMTS | 0<br>0<br>0<br>0<br>65<br>90 | 8.0<br>9.0 | 0.1   | 0.2   | 0.6         |

```
HPOTP_DISCHARGE_PRESSURE norm CUTWEIGHT 1
PARAM
                      7000
   OUL
                      0
   QLL
                      3000
   QRATE
   MODE1DWELL
                      2.0
                     0.24
   MODE 3ADWELL
   MODE 3EDWELL
                     0.48
                     0.34
   MODE 4 ADWELL
   MODE 4 EDWELL
                     0.24
                     1.0
   MODE 5 DWELL
                      16.0
   MODE3CPCDELTA
                     101.0
   MODE3DPCDELTA
                     16.0
   MODE4CPCDELTA
   MODE4DPCDELTA
                     101.0
   CHN
         SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
         LOXGAIN
                     0
         FUELGAIN
         LOXOFFST
                     0
         FUELOFFST
                     0
                      0
         TIMEGAIN
                      0
         TIMESTART
         TIMESTOP
                      7000
         MODE OUL
         MODEOLL
                      0
                      140
         MODE1UL
                      140
         MODE1LL
         MODE1SD
                      140
                      3.0
         MODE1FACT
         MODE 2UL
                      55
                      55
         MODE2LL
                      3.0
         MODE2FACT
                    407
         MODE3GAIN
         MODE3S1UL
                      450
                      450
         MODE3S1LL
                      450
         MODE3S2UL
                      450
         MODE3S2LL
                      450
         MODE3S3UL
                      450
         MODE3S3LL
                      -462
         MODE 4GAIN
                      450
         MODE4S1UL
         MODE 4S1LL
                      450
                      450
         MODE 4S2UL
                      450
         MODE4S2LL
                      450
         MODE4S3UL
                      450
         MODE4S3LL
```

```
HPOTP_IMSL_PURGE_PRESS norm CUTWEIGHT 1
PARAM
                     650
   QUL
                     0
   QLL
                    200
   QRATE
                     2.0
   MODE1DWELL
                    0.24
  MODE 3ADWELL
                    0.24
  MODE 3EDWELL
                    0.24
  MODE 4ADWELL
                    0.24
   MODE 4EDWELL
                    0.2
   MODE 5 DWELL
   MODE3CPCDELTA
                    100.0
                    101.0
   MODE3DPCDELTA
                    100.0
   MODE4CPCDELTA
                    101.0
   MODE4DPCDELTA
   CHN
                                      0.2
         SAMPLEWTS 0.05 0.05 0.1
                                           0.6
                   0
         LOXGAIN
                   0
        FUELGAIN
                    0
        LOXOFFST
                    0
        FUELOFFST
                     0
         TIMEGAIN
         TIMESTART
                     0
                     0
         TIMESTOP
                    650.0
         MODEOUL
         MODEOLL
                    0
                    5.0
        MODE1UL
                    5.0
        MODE1LL
         MODE1SD
                     5.0
                     3.0
         MODE1FACT
                     10.0
         MODE 2UL
        MODE2LL
                     10.0
        MODE2FACT
                    10.0
         MODE3GAIN
                     .2207
         MODE3S1UL
                   22.0
         MODE3S1LL
                     22.0
                     22.0
         MODE3S2UL
                     22.0
         MODE3S2LL
         MODE3S3UL
                    22.0
         MODE3S3LL
                    22.0
         MODE 4 GAIN
                     -.3351
                     22.0
         MODE 4S1UL
                     22.0
         MODE 4S1LL
         MODE4S2UL
                    22.0
                    22.0
         MODE4S2LL
         MODE4S3UL 22.0
         MODE 4S3LL
                     22.0
```

```
HPOTP_BOOST_PUMP_DIS_PRESSURE norm CUTWEIGHT 1
PARAM
                    9500
  QUL
  QLL
  QRATE
                    4700
  MODE1DWELL
                    2.0
  MODE 3ADWELL
                   0.24
  MODE 3 EDWELL
                   0.48
                  0.24
  MODE 4 ADWELL
                   0.24
  MODE4EDWELL
                 1.0
  MODE5DWELL .
  MODE3CPCDELTA
                   16.0
  MODE3DPCDELTA
                   101.0
                   16.0
  MODE4CPCDELTA
                   101.0
  MODE4DPCDELTA
  CHN
        SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                  -1.0
        LOXGAIN
                  0.2
        FUELGAIN
                   0
        LOXOFFST
                    0
        FUELOFFST
                    0
        TIMEGAIN
        TIMESTART
                    0
                    0
        TIMESTOP
                    9500
        MODEOUL
                    0
        MODEOLL
                    90
        MODE1UL
                    90
        MODE1LL
                    90
        MODE1SD
        MODELFACT
                    3.0
                    150
        MODE 2UL
                    150
        MODE2LL
                    3.0
        MODE2FACT
        MODE3GAIN 700
        MODE3S1UL
                  1000
        MODE3S1LL 1000
        MODE3S2UL
                  1000
        MODE3S2LL
                  1000
                  1000
        MODE3S3UL
        MODE3S3LL
                  1000
        MODE4GAIN -803
                  1000
        MODE 4S1UL
        MODE4S1LL 1000
                  1000
        MODE 4S2UL
                  1000
        MODE4S2LL
        MODE 4S3UL
                  1000
                  1000
        MODE 4S3LL
```

```
HPOTP_SEC_SEAL_CAVITY_PR type1 CUTWEIGHT 1
PARAM
                     300
   QUL
                      4
   QLL
                     180
   QRATE
   MODE1DWELL
                     2.0
                     0.24
   MODE 3ADWELL
                     0.24
   MODE 3EDWELL
                     0.24
   MODE 4 ADWELL
                     0.24
   MODE 4 EDWELL
                     0.2
   MODE 5 DWELL
                     16.0
   MODE3CPCDELTA
   MODE3DPCDELTA
                    101.0
   MODE4CPCDELTA
                     16.0
                     101.0
   MODE4DPCDELTA
   CHN
         SAMPLEWTS 0.05 0.05 0.1
                                      0.2
                                             0.6
         LOXGAIN
                    0
                    0
         FUELGAIN
         LOXOFFST
                      0
         FUELOFFST
                      0.05575
         TIMEGAIN
                      7.0
         TIMESTART
         TIMESTOP
                      500.0
         MODEOUL
                      300
                      4
         MODEOLL
         MODE1UL
                      3.0
         MODE1LL
                      3.0
         MODE1SD
                      3.0
         MODE1FACT
                      3.0
                      10
         MODE2UL
                      10
         MODE2LL
         MODE2FACT
                      3.0
                      2.273
         MODE3GAIN
                      20.0
         MODE3S1UL
         MODE3S1LL
                      20.0
                      20.0
         MODE3S2UL
                      20.0
         MODE3S2LL
                      20.0
         MODE3S3UL
                      20.0
         MODE 3S3LL
                      -1.910
         MODE 4GAIN
         MODE 4S1UL
                      20.0
          MODE4S1LL
                      20.0
                      20.0
          MODE 4S2UL
                      20.0
         MODE 4S2LL
                      20.0
         MODE 4S3UL
                      20.0
         MODE 4S3LL
```

```
HPOTP_TURBINE_DIS_TEMP_CH_A norm CUTWEIGHT 1
PARAM
                    2650
  QUL
                    810
  QLL
                    500
  QRATE
                    2.0
  MODE1DWELL
                    0.84
  MODE 3ADWELL
                   0.84
  MODE 3EDWELL
  MODE 4 ADWELL
                    0.84
  MODE4EDWELL
                   0.84
                   3.0
  MODE 5 DWELL
                   100.0
  MODE3CPCDELTA
                   101.0
  MODE3DPCDELTA
                   100.0
  MODE4CPCDELTA
  MODE4DPCDELTA
                    101.0
   CHN
        SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
        LOXGAIN -0.45
FUELGAIN .3
LOXOFFST 0
        FUELOFFST 0
        TIMEGAIN
                    0
                  0
        TIMESTART
                   0
        TIMESTOP
        MODEOUL 2650
MODEOLL 150
                   75
        MODEIUL
                  75
75
        MODE1LL
                    75
        MODE1SD
        MODE1FACT 3.0
                  100
        MODE2UL
                   100
        MODE2LL
        MODE2FACT 3.0
        MODE3GAIN 31.18
        MODE3S1UL 350
        MODE3S1LL
                   350
        MODE3S2UL
        MODE3S2LL
                   350
        MODE3S3UL
                   350
        MODE3S3LL
                   350
        MODE4GAIN -45.85
        MODE4S1UL
                   350
        MODE4S1LL 350
        MODE4S2UL 350
        MODE4S2LL 350
        MODE4S3UL 350
        MODE4S3LL 350
```

```
HPOTP_TURBINE_DIS_TEMP_CH_B norm CUTWEIGHT 1
PARAM
                     2650
   QUL
                     810
   QLL
   QRATE
                     500
                     2.0
  MODE1DWELL
  MODE 3ADWELL
                    0.84
  MODE 3 EDWELL
                    0.84
                    0.84
  MODE 4 ADWELL
                    0.84
  MODE 4 EDWELL
                     3.0
  MODE 5DWELL
                    100.0
  MODE3CPCDELTA
                   101.0
  MODE3DPCDELTA
  MODE4CPCDELTA
                     101.0
  MODE4DPCDELTA
   CHN
                    0.05 0.05 0.1 0.2 0.6
         SAMPLEWTS
                    -0.45
         LOXGAIN
         FUELGAIN
                    .3
                     0
         LOXOFFST
                     0
         FUELOFFST
         TIMEGAIN
                     0
                     0
         TIMESTART
                     0
         TIMESTOP
                     2650
         MODEOUL
                     150
         MODEULL
         MODEIUL
                     75
                     75
         MODE1LL
                     75
         MODE1SD
         MODE1FACT
                     3.0
                     100
         MODE2UL
                     100
         MODE2LL
         MODE 2FACT
                     3.0
         MODE 3GAIN
                     40.02
                     350
         MODE3S1UL
                     350
         MODE3S1LL
                     350
        MODE3S2UL
                     350
        MODE3S2LL
        MODE3S3UL
                     350
                     350
         MODE3S3LL
                     -52.41
         MODE 4GAIN
         MODE4S1UL
                     350
         MODE 4S1LL
                     350
                     350
         MODE4S2UL
         MODE 4S2LL
                     350
                     350
         MODE 4S3UL
         MODE 4S3LL
                     350
```

```
LPFTP_SHAFT_SPEED norm CUTWEIGHT 1
PARAM
                   20000
  QUL
  QLL
                   0
                   12000
  ORATE
  MODE1DWELL
                  2.0
  MODE 3ADWELL
                  0.36
                  0.48
  MODE 3EDWELL
                  0.36
  MODE 4 ADWELL
                  0.24
  MODE 4 EDWELL
                  1.0
  MODE 5 DWELL
                 16.0
  MODE3CPCDELTA
                 101.0
  MODE3DPCDELTA
  MODE4CPCDELTA
                 16.0
                  101.0
  MODE4DPCDELTA
  CHN
        SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                 -0.7
        LOXGAIN
                 -1.2
        FUELGAIN
                  0
        LOXOFFST
        FUELOFFST
                 0
        TIMEGAIN
                   0
        TIMESTART
        TIMESTOP
                 20000
        MODEOUL
        MODEOLL
                 0
               225
225
225
        MODEIUL
        MODE1LL
        MODE1SD
        MODE1FACT 3.0
                 225
225
        MODE2UL
        MODE2LL
        MODE2FACT 3.0
        MODE3GAIN 586.2
        MODE3S1UL 1100
        MODE3S1LL 1100
        MODE3S2UL 1100
        MODE3S2LL 1100
        MODE3S3UL 1100
        MODE3S3LL 1100
        MODE4GAIN -644.8
        MODE4SIUL 1100
        MODE4SILL 1100
        MODE4S2UL 1100
        MODE4S2LL 1100
        MODE4S3UL 1100
        MODE4S3LL 1100
```

```
LPOTP_PUMP_DISCHARGE_PRESSURE norm CUTWEIGHT 1
PARAM
                     600
   QUL
   QLL
                     0
   QRATE
                     200
                    2.0
  MODE1DWELL
                   0.24
  MODE 3ADWELL
                   0.24
  MODE 3 EDWELL
                   0.44
  MODE 4 ADWELL
  MODE 4EDWELL
                    0.24
                    0.4
  MODE 5 DWELL
                   100.0
  MODE3CPCDELTA
                   100.0
  MODE3DPCDELTA
                   100.0
  MODE4CPCDELTA
                     101.0
  MODE4DPCDELTA
   CHN
                     0.05 0.05 0.1 0.2
         SAMPLEWTS
                    0.85
         LOXGAIN
         FUELGAIN
                    0
                    0
         LOXOFFST
                    0
         FUELOFFST
         TIMEGAIN
                     0
         TIMESTART
                     0
                     0
         TIMESTOP
                     600
         MODEOUL
         MODEOLL
                     0
         MODEIUL
                     10.0
         MODE1LL
                     10.0
         MODE1SD
                     10.0
                     3.0
         MODE1FACT
         MODE2UL
                     10.0
                     10.0
         MODE2LL
         MODE2FACT
                     3.0
                     20.01
         MODE3GAIN
                     40.0
         MODE3S1UL
                     40.0
         MODE3S1LL
                     40.0
         MODE3S2UL
                     40.0
         MODE3S2LL
         MODE3S3UL
                     40.0
                     40.0
         MODE3S3LL
                     -19.66
         MODE 4 GAIN
                     40.0
         MODE4S1UL
                     40.0
         MODE4S1LL
         MODE4S2UL
                     40.0
         MODE4S2LL
                     40.0
         MODE4S3UL 40.0
         MODE4S3LL 40.0
```

```
MCC_PRESSURE norm CUTWEIGHT 1
PARAM
   QUL
                      3500
   QLL
   QRATE
                      2100
   MODE1DWELL
                      2.0
                      0.24
   MODE 3ADWELL
   MODESEDWELL
                      0.48
                      0.14
   MODE 4 ADWELL
                      0.24
   MODE 4EDWELL
                      0.6
   MODE 5 DWELL
   MODE3CPCDELTA
                      9.0
   MODE3DPCDELTA
                      26.0
   MODE4CPCDELTA
                      9.0
   MODE4DPCDELTA
                      26.0
   CHN
                                                0.6
                      0.05 0.05 0.1
                                          0.2
         SAMPLEWTS
                      0
         LOXGAIN
                      0
         FUELGAIN
                      0
         LOXOFFST
                      0
         FUELOFFST
                      0
         TIMEGAIN
                      0
          TIMESTART
                      0
         TIMESTOP
                       3500
         MODEOUL
                       0
         MODEOLL
         MODEIUL
                       60
                       60
         MODE1LL
                       60
         MODE1SD
                       3.0
         MODE1FACT
         MODE 2UL
                       30
         MODE 2LL
                       30
         MODE 2 FACT
                       3.0
         MODE3GAIN
                       284.8
                       350
         MODE3S1UL
                       350
         MODE3S1LL
                       350
         MODE3S2UL
         MODE3S2LL
                       350
                       350
         MODE3S3UL
                       350
         MODE3S3LL
         MODE 4GAIN
                       -316.0
                       350
         MODE4S1UL
         MODE 4S1LL
                       350
         MODE 4S2UL
                       350
                       350
         MODE 4S2LL
                       350
         MODE 4S3UL
         MODE4S3LL
                       350
```

```
MCC_LINER_CAVITY_PRESSURE type1 CUTWEIGHT 1
PARAM
                   100
  OUL
                   -100
  QLL
  QRATE
                   120
  MODE1DWELL
                   2.0
  MODE 3ADWELL
                   0.24
                   0.24
  MODE 3EDWELL
  MODE 4ADWELL
                   0.24
  MODE 4 EDWELL
                   0.24
  MODE 5 DWELL
                   0.2
                   100.0
  MODE3CPCDELTA
                   101.0
  MODE3DPCDELTA
                   100.0
  MODE4CPCDELTA
  MODE4DPCDELTA
                   101.0
  CHN
        SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                 0
        LOXGAIN
                 0
        FUELGAIN
                  0
        LOXOFFST
        FUELOFFST 0
        TIMEGAIN
                   0
                  0
        TIMESTART
                   0
        TIMESTOP
        MODEOUL 100.0 MODEOLL -100.
                   -100.0
                 3.3
        MODEIUL
                 0.6
        MODEILL
        MODE1SD
                  3.3
        MODE1FACT 3.0
        MODE2UL 3.3
                  0.6
        MODE2LL
        MODE2FACT 3.0
        MODE3GAIN 0
                   3.3
        MODE3S1UL
        MODE3S1LL
                  3.3
        MODE3S2UL
                  3.3
        MODE 3S2LL
                  3.3
        MODE3S3UL
                  3.3
        MODE3S3LL
                  3.3
        MODE4GAIN 0
        MODE4S1UL 3.3
        MODE4S1LL 3.3
        MODE4S2UL 3.3
        MODE4S2LL 3.3
        MODE4S3UL 3.3
        MODE4S3LL 3.3
```

```
PARAM CPOV_ACT_POSITION norm CUTWEIGHT 1
   QUL
                       105
   QLL
                       0
                       20
   QRATE
   MODE1DWELL
                       2.0
   MODE 3ADWELL
                      .24
   MODE 3EDWELL
   MODE 4 ADWELL
                      0
   MODE4EDWELL
  MODE4EDWELL 1.0

MODE3CPCDELTA 11.0

MODE3DPCDELTA 101.0

MODE4CPCDELTA 11.0

MODE4DPCDELTA 101.0
   CHN
          SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
          LOXGAIN -0.02 FUELGAIN 0
          FUELGAIN
                      0
          LOXOFFST
                     0
          FUELOFFST
                       0
          TIMEGAIN
                     0
          TIMESTART
                      0
          TIMESTOP
                       105
          MODE OUL
                     0
          MODEOLL
                       3.0
          MODE1UL
                       3.0
          MODELLL
                       3.0
          MODE1SD
                     3.0
          MODE1FACT
                      6.0
          MODE2UL
          MODE2LL
                       6.0
                      3.0
          MODE2FACT
                     4.539
          MODE3GAIN
                       12.0
          MODE3S1UL
          MODE3S1LL
                       12.0
                       12.0
          MODE3S2UL
          MODE3S2LL
                       12.0
          MODE3S3UL
                      12.0
          MODE3S3LL
                       12.0
          MODE 4GAIN
                       -5.038
                       12.0
          MODE 4 S1UL
          MODE4S1LL
                       12.0
          MODE 4S2UL
                       12.0
                     12.0
          MODE 4S2LL
          MODE4S3UL 12.0
          MODE4S3LL 12.0
```

## Table III Adaptation Data for Pratt LOX Pump w/ Modified CCV Schedule

```
/* adaptation data using 10 samples from 904 MC for gains
  for PW LOX pump w/ modified CCV schedule */
COLIMIT 3 /* data for safd_4 algorithm */ RPL 3006.0 /* pcref at 100\% */
GOXVALVE
              500.0 /* <time>*/
   CLOSE
FUELVALVE
              500.0 /* <time>*/
   CLOSE
LPOP_INLET_PR
               200.0
   QŪL
              0.0
   QLL
              120.0
   QRATE
LPFP_INLET_PR
            100.0
   <u>ÖÜ</u>L
   QLL
              0.0
              60.0
   QRATE
```

```
FPOV_POS norm CUTWEIGHT 1
PARAM
                   105.0
  QUL
                    0.0
  QLL
                   20.0
  QRATE
                   2.0
  MODE1DWELL
  MODE 3ADWELL
                    .24
  MODE 3EDWELL
  MODE 4ADWELL
                    0
  MODE 4 EDWELL
                   1.0
  MODE 5 DWELL
  MODESDWELL 1.0
MODE3CPCDELTA 100.0
MODE3DPCDELTA 101.0
  MODE4CPCDELTA
                   100.0
                   101.0
  MODE4DPCDELTA
  CHN
        SAMPLEWTS 0.05 0.05 0.1 0.2
                                         0.6
        LOXGAIN 0.01
                   -.035
        FUELGAIN
                   0
        LOXOFFST
                  0
        FUELOFFST
                    0
        TIMEGAIN
                    0
        TIMESTART
        TIMESTOP
                   0
                  105.0
        MODEOUL
                  0.0
        MODEOLL
                  1.4
        MODE1UL
        MODELLL 1.4
                   1.4
        MODE1SD
        MODE1FACT 3.0
        MODE2UL 2.0
                   2.0
        MODE2LL
        MODE2FACT 3.0
        MODE3GAIN 3.1
        MODE3S1UL 6.5
        MODE3S1LL 6.5
        MODE3S2UL 6.5
        MODE3S2LL 6.5
        MODE3S3UL 6.5
                  6.5
        MODE3S3LL
        MODE4GAIN -2.8
        MODE4S1UL 6.5
        MODE4S1LL 6.5
        MODE4S2UL 6.5
        MODE4S2LL 6.5
        MODE4S3UL 6.5
        MODE4S3LL 6.5
```

```
FUEL FLOW norm CUTWEIGHT 1
PARAM
                     24000
   QUL
                     0
   QLL
                     14400
   QRATE
                     2.0
   MODE1DWELL
                    0.28
   MODE 3ADWELL
                    0.12
   MODE 3EDWELL
                    0.28
   MODE 4 ADWELL
                    0.12
   MODE 4 EDWELL
                    0.2
   MODE 5DWELL
                     11.0
   MODE3CPCDELTA
                     101.0
   MODE3DPCDELTA
                     11.0
   MODE4CPCDELTA
                     101.0
   MODE4DPCDELTA
   CHN
                     0.05 0.05 0.1 0.2
                                           0.6
         SAMPLEWTS
                     0
         LOXGAIN
         FUELGAIN
                     -2.3
         LOXOFFST
                     0
         FUELOFFST
                     0
                     0
         TIMEGAIN
         TIMESTART
                     0
         TIMESTOP
                     0
                     24000
         MODEOUL
                     0
         MODEOLL
                     250
         MODEIUL
         MODE1LL
                     250
                     250
         MODE1SD
                     3.0
         MODE1FACT
                     350
         MODE2UL
                     350
         MODE2LL
         MODE2FACT
                     3.0
         MODE3GAIN
                     1554
                     1000
         MODE3S1UL
                     1000
         MODE3S1LL
                     1000
         MODE3S2UL
                     1000
         MODE3S2LL
         MODE3S3UL
                     1000
         MODE3S3LL
                     1000
         MODE4GAIN
                     -1533
         MODE4S1UL
                     1000
                    1000
         MODE 4S1LL
                    1000
         MODE4S2UL
         MODE4S2LL
                    1000
                    1000
         MODE4S3UL
         MODE4S3LL
                     1000
```

```
/*PARAM HEX_BYPASS_MIX_INTERFACE_TEMP norm CUTWEIGHT 1
                     500
   QUL
                     -300
   QLL
                     480
   QRATE
                    2.0
  MODE1DWELL
                   0.24
  MODE 3ADWELL
                    0.24
  MODE 3EDWELL
   MODE 4 ADWELL
                    0.24
                    0.24
   MODE 4 EDWELL
                    0.2
   MODE5DWELL
                    100.0
   MODE3CPCDELTA
                     101.0
  MODE3DPCDELTA
                    100.0
   MODE4CPCDELTA
                     101.0
   MODE4DPCDELTA
   CHN
         SAMPLEWTS 0.05 0.05 0.1 0.2
                                           0.6
                    -1.0
         LOXGAIN
                   0
         FUELGAIN
                     0
         LOXOFFST
                     0
         FUELOFFST
                     0
         TIMEGAIN
                     0
         TIMESTART
                     0
         TIMESTOP
                     500
         MODEOUL
                     -300
         MODEOLL
                     40.0
         MODE1UL
                     50.0
         MODELLL
                     0
         MODE1SD
                     3.0
         MODE1FACT
         MODE 2UL
                     40.0
                     50.0
         MODE2LL
         MODE2FACT
                     3.0
         MODE3GAIN
                     0
         MODE3S1UL
         MODE3S1LL
                     0
         MODE3S2UL
                     0
         MODE3S2LL
         MODE3S3UL
                     0
                     0
         MODE3S3LL
                    0
         MODE 4 GAIN
         MODE4S1UL
         MODE4S1LL
         MODE 4S2UL
                    0
                    0
         MODE4S2LL
                    0
         MODE 4S3UL
         MODE4S3LL
```

```
/*PARAM HEX_VENTURI_DELTA_PRESSURE norm CUTWEIGHT 1
                      500
   QUL
                      -500
   QLL
                      600
   QRATE
   MODELDWELL
                      2.0
                      0.24
   MODE 3ADWELL
                      0.24
   MODE 3EDWELL
                      0.24
   MODE 4 ADWELL
                      0.24
   MODE 4 EDWELL
                      0.2
   MODE 5 DWELL
                      100.0
   MODE3CPCDELTA
                      101.0
   MODE3DPCDELTA
                      100.0
   MODE4CPCDELTA
                      101.0
   MODE4DPCDELTA
   CHN
                                              0.6
                      0.05 0.05 0.1
                                       0.2
         SAMPLEWTS
                      -0.07
         LOXGAIN
         FUELGAIN
                      0
                      0
         LOXOFFST
                      0
         FUELOFFST
         TIMEGAIN
                      0
         TIMESTART
                      0
         TIMESTOP
                      0
         MODEOUL
                      500.0
         MODEOLL
                      -500.0
                      5.0
         MODE1UL
         MODE1LL
                      5.0
                      0
         MODE1SD
                      3.0
         MODELFACT
                      5.0
         MODE2UL
                      5.0
         MODE2LL
         MODE2FACT
                      3.0
         MODE 3GAIN
                      0
         MODE3S1UL
                      0
                      0
         MODE3S1LL
                      0
         MODE3S2UL
                      0
         MODE3S2LL
                      0
         MODE3S3UL
         MODE3S3LL
                      0
                      0
         MODE 4 GAIN
                      0
         MODE 4S1UL
                      0
         MODE4S1LL
                      0
         MODE 4S2UL
         MODE4S2LL
                      0
         MODE4S3UL
                      0
         MODE 4S3LL
```

| */<br>PARAM                                                 | . HPFTP_ACCEL                                                                 | type2                                                                          | CUT                      | WEIGHT            | 1   |     |
|-------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------|-------------------|-----|-----|
| MODE:<br>MODE:<br>MODE:<br>MODE:<br>MODE:<br>MODE:<br>MODE: | E 1DWELL 3ADWELL 3EDWELL 4ADWELL 4EDWELL 5DWELL 3CPCDELTA 3DPCDELTA 4CPCDELTA | 30<br>0<br>18<br>2.0<br>0.24<br>0.24<br>0.24<br>0.2<br>100.0<br>101.0<br>100.0 |                          |                   |     |     |
| CHN                                                         | SAMPLEWTS<br>LOXGAIN<br>FUELGAIN<br>LOXOFFST<br>FUELOFFST<br>PCREFLMTS        | 0.05<br>0<br>0<br>0<br>0<br>65<br>90<br>100<br>104<br>109                      | 8.0<br>8.5<br>9.0<br>9.5 | 0 0 0 0 0 0 0 0 0 | 0.2 | 0.6 |

```
HPFTP_BALANCE_CAVITY_PRESSURE norm CUTWEIGHT 1
PARAM
                     10000
   QUL
   \mathtt{QLL}
                     0
                     4000
   QRATE
                     2.0
   MODE1DWELL
                    0.28
   MODE 3ADWELL
                    0.48
   MODE 3EDWELL
                    0.28
   MODE 4 ADWELL
                    0.24
   MODE4EDWELL
                     1.0
   MODE 5DWELL
                    10.0
   MODE3CPCDELTA
                    11.0
   MODE3DPCDELTA
                    10.0
   MODE4CPCDELTA
                     11.0
   MODE4DPCDELTA
   CHN
         SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                     0
         LOXGAIN
                     0
         FUELGAIN
                      0
         LOXOFFST
                      0
         FUELOFFST
         TIMEGAIN
                      0
                      0
         TIMESTART
                      0
         TIMESTOP
                      10000.0
         MODEOUL
                      0
         MODEOLL
                      100
         MODE1UL
                      100
         MODEILL
                      50
         MODE1SD
         MODE1FACT
                      3.0
                      100
         MODE 2UL
                      100
         MODE2LL
         MODE2FACT
                      3.0
         MODE 3GAIN
                      461
                      300
          MODE3S1UL
                      300
          MODE3S1LL
                      300
          MODE3S2UL
                      300
          MODE3S2LL
          MODE3S3UL
                      300
                      300
          MODE3S3LL
                      -471
          MODE 4GAIN
                      300
          MODE4S1UL
                      300
          MODE4S1LL
          MODE4S2UL
                      300
         MODE4S2LL
                      300
                      300
          MODE4S3UL
                      300
          MODE4S3LL
```

```
HPFTP_COOLANT_LINER_PRESSURE norm CUTWEIGHT 1
PARAM
                     7000
   QUL
                     1800
   QLL
                     4200
   QRATE
  MODE1DWELL
                     2.0
   MODE 3ADWELL
                     0.24
                    0.48
   MODE 3EDWELL
                    0.24
   MODE 4 ADWELL
                    0.24
   MODE 4 EDWELL
                     1.0
   MODE5DWELL
   MODE3CPCDELTA
                     11.0
                     26.0
   MODE3DPCDELTA
   MODE4CPCDELTA
                     11.0
   MODE4DPCDELTA
                     26.0
   CHN
                     0.05 0.05 0.1 0.2
         SAMPLEWTS
                     0
         LOXGAIN
                     0
         FUELGAIN
         LOXOFFST
                     0
                     0
         FUELOFFST
                     0
         TIMEGAIN
                     0
         TIMESTART
                     0
         TIMESTOP
                     7000
         MODEOUL
                     1800
         MODEOLL
                     75
         MODEIUL
                      75
         MODE1LL
                      75
         MODE1SD
                      3.0
         MODE1FACT
                      60
          MODE 2UL
                      60
          MODE2LL
                      3.0
          MODE2FACT
                      325
          MODE3GAIN
          MODE3S1UL
                      95.
                      500
          MODE3S1LL
                      500
          MODE3S2UL
                      500
          MODE3S2LL
                      500
          MODE3S3UL
                      500
          MODE3S3LL
                      -334
          MODE 4 GAIN
                      500
          MODE 4S1UL
                      500
          MODE4S1LL
                      500
          MODE4S2UL
                      500
          MODE4S2LL
                     500
          MODE 4S3UL
                      500
          MODE 4S3LL
```

```
HPFTP_DISCHARGE_PRESSURE norm CUTWEIGHT 1
PARAM
                    9500
   QUL
                    0
  QLL
                    5700
  QRATE
                   2.0
  MODE1DWELL
                   0.28
  MODE 3ADWELL
                   0.36
  MODE3EDWELL
  MODE 4ADWELL
                   0.36
                   0.24
  MODE4EDWELL
                   1.0
  MODE 5 DWELL
                   100.0
  MODE3CPCDELTA
  MODE3DPCDELTA
                   101.0
  MODE4CPCDELTA 100.0
MODE4DPCDELTA 101.0
   ÇHN
         SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
         LOXGAIN -0.25
         FUELGAIN -0.6
                   0
         LOXOFFST
         FUELOFFST 0
                    0
         TIMEGAIN
                    0
         TIMESTART
         TIMESTOP
                    0
                     9500
         MODEOUL
                   0
         MODEOLL
                   150
         MODE1UL
                   150
         MODEILL
                   150
         MODE1SD
                     3.0
         MODELFACT
                    80
         MODE 2UL
                     80
         MODE2LL
                     3.0
         MODE2FACT
                   574
         MODE 3GAIN
                     850
         MODE3S1UL
         MODE3S1LL
                     850
         MODE3S2UL
                    850
         MODE3S2LL
                     850
                    850
         MODE3S3UL
                     850
         MODE3S3LL
                    -586
         MODE 4GAIN
                     850
         MODE 4S1UL
         MODE4S1LL
                     850
         MODE 4S2UL
                     850
                     850
         MODE 4S2LL
                    850
         MODE4S3UL
                     850
         MODE 4S3LL
```

```
HPFTP_SHAFT_SPEED norm CUTWEIGHT 1
PARAM
                     45000
   QUL
   QLL
                     0
                     27000
   QRATE
  MODE1DWELL
                     2.0
                     0.24
  MODE 3ADWELL
                     0.24
  MODE 3EDWELL
                     0.24
  MODE 4 ADWELL
                     0.24
  MODE 4 EDWELL
                     1.0
  MODE 5 DWELL
                     100.0
  MODE3CPCDELTA
  MODE3DPCDELTA
                    101.0
                    100.0
  MODE4CPCDELTA
  MODE4DPCDELTA
                     101.0
   CHN
                     0.05 0.05 0.1 0.2 0.6
         SAMPLEWTS
                     0
         LOXGAIN
                     -4.9
         FUELGAIN
                     0
         LOXOFFST
                     0
         FUELOFFST
         TIMEGAIN
                     0
                     0
         TIMESTART
                     0
         TIMESTOP
                     45000
         MODEOUL
         MODEOLL
                     0
                     400
         MODE1UL
                     400
         MODE1LL
                     400
         MODE1SD
                      3.0
         MODE1FACT
         MODE 2UL
                      300
         MODE2LL
                      300
         MODE2FACT
                      3.0
         MODE3GAIN
                      2076
         MODE3S1UL
                      2500
         MODE3S1LL
                      2500
         MODE3S2UL
                      2500
                      2500
         MODE3S2LL
         MODE3S3UL
                     2500
                     2500
         MODE3S3LL
         MODE4GAIN
                     -2088
                     2500
         MODE4S1UL
                     2500
         MODE4S1LL
         MODE4S2UL
                     2500
         MODE4S2LL
                     2500
         MODE 4S3UL
                     2500
         MODE 4S3LL
                     2500
```

```
PARAM HPFTP_TURBINE_DIS_TEMP_CH_A norm CUTWEIGHT 1
   QUL
                     2650
   QLL
                     810
                     500
   QRATE
                     2.0
   MODE1DWELL
                    0.24
   MODE 3ADWELL
                    0.24
   MODE 3EDWELL
                    0.24
   MODE 4 ADWELL
                    0.24
   MODE4EDWELL
                     1.0
   MODE5DWELL
                   100.0
101.0
100.0
   MODE3CPCDELTA
   MODE3DPCDELTA
   MODE4CPCDELTA
   MODE4DPCDELTA
                    101.0
   CHN
         SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
                    0.0
         LOXGAIN
                    -0.4
         FUELGAIN
                     0
         LOXOFFST
         FUELOFFST
                     0
                     0
         TIMEGAIN
                     0
         TIMESTART
                     0
         TIMESTOP
                     2650
         MODEOUL
         MODEOLL
                    810
                     50
         MODE1UL
                     50
         MODEILL
                     50
         MODE1SD
         MODE1FACT
                     3.0
         MODE2UL
                     60
         MODE2LL
                     60
         MODE2FACT
                     3.0
         MODE3GAIN
                     55
                     200
         MODE3S1UL
         MODE3S1LL
                     200
         MODE3S2UL
                     200
         MODE3S2LL
                     200
         MODE3S3UL
                     200
         MODE3S3LL
                     200
         MODE 4 GAIN
                     -55
         MODE4S1UL
                     200
         MODE4S1LL
                     200
         MODE4S2UL
                     200
         MODE4S2LL
                     200
         MODE4S3UL
                     200
         MODE4S3LL
                     200
```

```
HPFTP_TURBINE_DIS_TEMP_CH_B norm CUTWEIGHT 1
PARAM
                     2650
   QUL .
                     810
   QLL
                     500
   QRATE
                     2.0
  MODE1DWELL
  MODE 3ADWELL
                     0.24
                     0.24
  MODE 3EDWELL
  MODE 4 ADWELL
                     0.24
                     0.24
  MODE 4 EDWELL
                     1.0
  MODE 5 DWELL
                     11.0
  MODE3CPCDELTA
  MODE3DPCDELTA
                     26.0
  MODE4CPCDELTA
                     11.0
   MODE4DPCDELTA
                     26.0
   CHN
                     0.05 0.05 0.1 0.2 0.6
         SAMPLEWTS
                     0.0
         LOXGAIN
                     -0.4
         FUELGAIN
         LOXOFFST
                     0
         FUELOFFST
                     0
                     0
         TIMEGAIN
                     0
         TIMESTART
                     0
         TIMESTOP
                     2650
         MODEOUL
                     810
         MODEOLL
                     50
         MODE1UL
                     50
         MODE1LL
                      50
         MODE1SD
                      3.0
         MODE1FACT
                      60
         MODE 2UL
                      60
         MODE2LL
                      3.0
         MODE2FACT
                      37
         MODE3GAIN
         MODE3S1UL
                      200
                      200
         MODE3S1LL
                      200
         MODE3S2UL
                      200
         MODE3S2LL
                      200
         MODE3S3UL
                      200
         MODE3S3LL
                      -45
         MODE 4GAIN
                      200
         MODE 4S1UL
                      200
         MODE 4S1LL
                      200
         MODE4S2UL
                      200
         MODE4S2LL
         MODE 4S3UL
                      200
                      200
         MODE 4S3LL
```

| PARAM                                                | HPOTP_BOOST                                             | _PUMP_!                                                               | RADIAL_                                 | _ACCEL | type2 | CUTWEIGHT 1 |
|------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|--------|-------|-------------|
| MOD<br>MOD<br>MOD<br>MOD<br>MOD<br>MOD<br>MOD<br>MOD |                                                         | 30<br>0<br>18<br>2.0<br>0.24<br>0.24<br>0.24<br>0.2<br>100.0<br>101.0 |                                         |        |       |             |
| CHN                                                  | SAMPLEWTS LOXGAIN FUELGAIN LOXOFFST FUELOFFST PCREFLMTS | 0.05<br>0<br>0<br>0<br>0<br>65<br>90<br>100<br>104<br>109             | 0.05<br>5.5<br>7.0<br>8.0<br>9.5<br>9.5 | 0.1    | 0.2   | 0.6         |

```
HPOTP_DISCHARGE_PRESSURE norm CUTWEIGHT
PARAM
                     7000
   QUL
   QLL
                     3000
   QRATE
                     2.0
  MODE1DWELL
                     0.24
  MODE 3ADWELL
                    0.48
  MODE3EDWELL
                    0.34
  MODE 4 ADWELL
                    0.24
   MODE 4 EDWELL
                    1.0
   MODE5DWELL
                   16.0
   MODE3CPCDELTA
                   101.0
   MODE3DPCDELTA
                    16.0
   MODE4CPCDELTA
                     101.0
   MODE4DPCDELTA
   CHN
                     0.05 0.05 0.1 0.2 0.6
         SAMPLEWTS
                    0
         LOXGAIN
                    0
         FUELGAIN
                     0
         LOXOFFST
                     0
         FUELOFFST
                     0
         TIMEGAIN
                     0
         TIMESTART
                     0
         TIMESTOP
                     7000
         MODEOUL
                     0
         MODE OLL
                     140
         MODE1UL
                     140
         MODE1LL
                     140
         MODE1SD
         MODE1FACT
                     3.0
                     55
         MODE2UL
                     55
         MODE2LL
         MODE2FACT
                     3.0
         MODE3GAIN
                    441
                     450
         MODE3S1UL
                     450
         MODE3S1LL
         MODE3S2UL
                    450
                    450
         MODE3S2LL
         MODE3S3UL
                     450
                     450
         MODE3S3LL
                     -464
         MODE 4GAIN
                     450
          MODE 4S1UL
          MODE4S1LL
                     450
          MODE4S2UL
                     450
          MODE4S2LL
                    450
          MODE4S3UL
                     450
                     450
          MODE 4S3LL
```

```
HPOTP_IMSL_PURGE_PRESS norm CUTWEIGHT 1
PARAM
                    650
  QUL
                    0
  QLL
                    200
  QRATE
                    2.0
  MODE1DWELL
                   0.24
  MODE 3 ADWELL
                   0.24
  MODE 3EDWELL
                   0.24
  MODE 4 ADWELL
                   0.24 .
   MODE 4 EDWELL
                    0.2
   MODE5DWELL
                   100.0
   MODE3CPCDELTA
                   101.0
   MODE3DPCDELTA
                   100.0
   MODE4CPCDELTA
                    101.0
   MODE4DPCDELTA
   CHN
                   0.05 0.05 0.1 0.2 0.6
         SAMPLEWTS
                    0
         LOXGAIN
                    0
         FUELGAIN
         LOXOFFST
                     0
         FUELOFFST
                     0
                     0
         TIMEGAIN
         TIMESTART
                     0
         TIMESTOP
                     0
                     650.0
         MODEOUL
                     0
         MODEOLL
                     5.0
         MODEIUL
         MODE1LL
                     5.0
                     5.0
         MODE1SD
         MODE1FACT
                     3.0
                     10.0
         MODE2UL
                     10.0
         MODE2LL
         MODE2FACT
                     10.0
         MODE3GAIN
                     1.7
         MODE3S1UL
                     22.0
                     22.0
         MODE3S1LL
         MODE3S2UL 22.0
          MODE3S2LL 22.0
         MODE3S3UL 22.0
          MODE3S3LL 22.0
          MODE4GAIN -1.7
          MODE4S1UL 22.0
                    22.0
          MODE4S1LL
                    22.0
          MODE 4S2UL
          MODE4S2LL 22.0
          MODE4S3UL 22.0
          MODE4S3LL 22.0
```

```
HPOTP_BCCST_PUMP_DIS_PRESSURE norm CUTWEIGHT 1
PARAM
                     9500
   QUL
                    0
   QLL
                    4700
   QRATE
                    2.0
  MODE1DWELL
                   0.24
  MODE 3ADWELL
                   0.48
  MODE 3EDWELL
                   0.24
  MODE 4ADWELL
                   0.24
   MODE 4 EDWELL
                    1.0
   MODE 5 DWELL
                   16.0
   MODE3CPCDELTA
                   101.0
   MODE3DPCDELTA
                   16.0
   MODE4CPCDELTA
   MODE4DPCDELTA
                     101.0
   CHN
                                           0.6
                   0.05 0.05 0.1 0.2
         SAMPLEWTS
                    -1.0
         LOXGAIN
                   0.5
         FUELGAIN
                   0
         LOXOFFST
                     0
         FUELOFFST
                     0
         TIMEGAIN
                     0
         TIMESTART
                     0
         TIMESTOP
                     9500
         MODEOUL
                     0
         MODEOLL
                     90
         MODE1UL
         MODE1LL
                     90
                     90
         MODE1SD
                     3.0
         MODE1FACT
         MODE2UL
                     150
                     150
         MODE2LL
                     3.0
         MODE2FACT
         MODE3GAIN
                     772
         MODE3S1UL 1000
                     1000
         MODE3S1LL
                     1000
         MODE3S2UL
                     1000
         MODE3S2LL
                     1000
          MODE3S3UL
                     1000
          MODE3S3LL
                     -827
          MODE4GAIN
                     1000
          MODE4S1UL
                     1000
          MODE4S1LL
                     1000
          MODE 4S2UL
          MODE4S2LL
                    1000
                    1000
          MODE4S3UL
                      1000
          MODE 4S3LL
```

```
HPOTP_SEC_SEAL_CAVITY_PR type1 CUTWEIGHT 1
PARAM
                      300
   QUL
                      4
   QLL
                      180
   QRATE
                      2.0
   MODE1DWELL
   MODE 3ADWELL
                      0.24
                      0.24
   MODE 3EDWELL
   MODE 4 ADWELL
                      0.24
                      0.24
   MODE 4 EDWELL
                      0.2
   MODE5DWELL
                      16.0
   MODE3CPCDELTA
   MODE3DPCDELTA
                      101.0
                      16.0
   MODE4CPCDELTA
                      101.0
   MODE4DPCDELTA
   CHN
                      0.05 0.05 0.1 0.2 0.6
         SAMPLEWIS
                      0
         LOXGAIN
                      0
         FUELGAIN
                      0
          LOXOFFST
                      0
          FUELOFFST
                      0.05575
          TIMEGAIN
                      7.0
          TIMESTART
                      500.0
          TIMESTOP
                      300
          MODEOUL
                      4
          MODEOLL
                      3.0
          MODELUL
                      3.0
          MODE1LL
                      3.0
          MODE1SD
                      3.0
          MODE1FACT
                      10
          MODE 2UL
                      10
          MODE2LL
                      3.0
          MODE2FACT
                      2.6
          MODE3GAIN
                      20.0
          MODE3S1UL
                      20.0
          MODE3S1LL
                      20.0
          MODE3S2UL
                      20.0
          MODE3S2LL
                      20.0
          MODE3S3UL
                      20.0
          MODE3S3LL
          MODE4GAIN
                      -2.3
                       20.0
          MODE4S1UL
                       20.0
          MODE4S1LL
                       20.0
          MODE 4S2UL
          MODE 4S2LL
                       20.0
          MODE4S3UL
                       20.0
          MODE4S3LL
                      20.0
```

```
HPOTP_TURBINE_DIS_TEMP_CH_A norm CUTWEIGHT 1
PARAM
                     2650
   QUL
                     810
   QLL
                     500
   QRATE
                     2.0
   MODE1DWELL
                     0.84
   MODE 3ADWELL
                     0.84
   MODE 3EDWELL
                     0.84
   MODE 4 ADWELL
                     0.84
   MODE 4 EDWELL
                     3.0
   MODE 5 DWELL
                     100.0
   MODE3CPCDELTA
                     101.0
   MODE3DPCDELTA
                     100.0
   MODE4CPCDELTA
                      101.0
   MODE4DPCDELTA
   CHN
                                             0.6
                      0.05 0.05 0.1 0.2
         SAMPLEWTS
                     -0.45
         LOXGAIN
         FUELGAIN
                      1.2
                      0
         LOXOFFST
                      0
         FUELOFFST
                      0
          TIMEGAIN
          TIMESTART
                      0
                      0
          TIMESTOP
                      2650
          MODEOUL
                      150
          MODEOLL
                      75
          MODE1UL
                      75
          MODEILL
                      75
          MODE1SD
                      3.0
          MODE1FACT
                      100
          MODE2UL
                      100
          MODE2LL
                      3.0
          MODE2FACT
                      57
          MODE 3GAIN
                      350
          MODE3S1UL
                      350
          MODE3S1LL
          MODE3S2UL
                      350
                       350
          MODE3S2LL
                       350
          MODE3S3UL
                       350
          MODE3S3LL
                       -50
          MODE 4GAIN
                       350
          MODE4S1UL
                       350
          MODE4S1LL
          MODE4S2UL
                       350
          MODE4S2LL
                      350
                       350
          MODE4S3UL
                      350
          MODE4S3LL
```

```
HPOTP_TURBINE_DIS_TEMP_CH_B norm CUTWEIGHT 1
PARAM
                      2650
   QUL
                      810
   QLL
                      500
   QRATE
                      2.0
   MODE1DWELL
                      0.84
   MODE 3ADWELL
                     0.84
   MODE 3EDWELL
                     0.84
   MODE 4 ADWELL
                     0.84
   MODE 4 EDWELL
                      3.0
   MODE 5 DWELL
                     100.0
   MODE3CPCDELTA
                     101.0
   MODE3DPCDELTA
                      100.0
   MODE4CPCDELTA
                      101.0
   MODE4DPCDELTA
   CHN
                     0.05 0.05 0.1 0.2 0.6
         SAMPLEWTS
                     -0.45
         LOXGAIN
                     1.2
         FUELGAIN
                     0
         LOXOFFST
                      0
         FUELOFFST
                      0
         TIMEGAIN
                      0
         TIMESTART
                      0
         TIMESTOP
                      2650
         MODEOUL
                      150
         MODEOLL
         MODEIUL
                      75
                      75
         MODE1LL
                      75
         MODE1SD
                      3.0
         MODE1FACT
                      100
         MODE2UL
                      100
         MODE2LL
         MODE2FACT
                      3.0
         MODE3GAIN
                      60
                      350
          MODE3S1UL
                      350
          MODE3S1LL
                      350
          MODE3S2UL
                      350
          MODE3S2LL
          MODE3S3UL
                      350
                      350
          MODE3S3LL
                      -60
          MODE 4GAIN
                      350
          MODE4S1UL
                      350
          MODE4S1LL
          MODE4S2UL
                      350
          MODE4S2LL
                      350
          MODE4S3UL
                      350
                      350
          MODE4S3LL
```

```
LPFTP_SHAFT_SPEED norm CUTWEIGHT 1
PARAM
                     20000
   QUL
                     0
   QLL
                    12000
   QRATE
  MODE1DWELL
                    2.0
                   0.36
  MODE 3ADWELL
                   0.48
  MODE 3EDWELL
                    0.36
  MODE 4 ADWELL
                    0.24
  MODE 4 EDWELL
                    1.0
   MODE 5DWELL
                   16.0
  MODE3CPCDELTA
                   101.0
  MODE3DPCDELTA
                    16.0
   MODE4CPCDELTA
   MODE4DPCDELTA
                     101.0
   CHN
                    0.05 0.05 0.1 0.2
                                           0.6
         SAMPLEWTS
                    -0.7
         LOXGAIN
                    -2.8
         FUELGAIN
         LOXOFFST
         FUELOFFST
                     0
         TIMEGAIN
                     0
         TIMESTART
                     0
                     0
         TIMESTOP
                     20000
         MODEOUL
         MODEOLL
                     225
         MODELUL
                     225
         MODE1LL
                     225
         MODE1SD
                     3.0
         MODE1FACT
                     225
         MODE2UL
                     225
         MODE2LL
         MODE2FACT
                     3.0
         MODE3GAIN
                     570
                     1100
         MODE3S1UL
                     1100
         MODE3S1LL
                     1100
         MODE3S2UL
                     1100
         MODE3S2LL
                    1100
         MODE3S3UL
                    1100
         MODE3S3LL
                     -572
         MODE 4GAIN
                    1100
         MODE 4S1UL
                    1100
         MODE 4SILL
                    1100
         MODE4S2UL
                    1100
         MODE4S2LL
         MODE4S3UL 1100
                    1100
         MODE 4S3LL
```

```
LPOTP_PUMP_DISCHARGE_PRESSURE norm CUTWEIGHT 1
PARAM
                    600
   QUL
                    0
   QLL
                    200
   QRATE
                    2.0
   MODE1DWELL
   MODE 3ADWELL
                    0.24
                    0.24
   MODE 3 EDWELL
                    0.44
   MODE 4ADWELL
                    0.24
   MODE 4 EDWELL
                    0.4
   MODE5DWELL
                    100.0
   MODE3CPCDELTA
                    101.0
   MODE3DPCDELTA
                    100.0
   MODE4CPCDELTA
                    101.0
   MODE4DPCDELTA
   CHN
                    0.05 0.05 0.1 0.2 0.6
         SAMPLEWTS
                    0.85
         LOXGAIN
                    0
         FUELGAIN
         LOXOFFST
                    0
         FUELOFFST
                     0
                     0
         TIMEGAIN
         TIMESTART
                     0
                     0
         TIMESTOP
                     600
         MODEOUL
                     0
         MODEOLL
                     10.0
         MODE1UL
                     10.0
         MODE1LL
                     10.0
         MODE1SD
                     3.0
         MODE1FACT
                    10.0
         MODE2UL
                     10.0
         MODE2LL
                     3.0
         MODE2FACT
                    18
         MODE3GAIN
                    40.0
         MODE3S1UL
                    40.0
         MODE3S1LL
                    40.0
         MODE3S2UL
                    40.0
         MODE3S2LL
                    40.0
         MODE3S3UL
                    40.0
         MODE3S3LL
                    -17
         MODE 4GAIN
                    40.0
         MODE4S1UL
                    40.0
         MODE4S1LL
                    40.0
         MODE 4S2UL
                    40.0
         MODE4S2LL
                    40.0
         MODE4S3UL
         MODE4S3LL
                    40.0
```

```
MCC_PRESSURE norm CUTWEIGHT 1
PARAM
                     3500
   QUL
                     0
   QLL
                     2100
   QRATE
                     2.0
   MODE1DWELL
                     0.24
   MODE 3ADWELL
                    0.48
   MODE 3EDWELL
                     0.14
   MODE 4ADWELL
                   . 0.24
   MODE 4 EDWELL
                     0.6
   MODE 5 DWELL
                    9.0
26.
   MODE3CPCDELTA
                     26.0
   MODE3DPCDELTA
   MODE4CPCDELTA
                     9.0
                     26.0
   MODE4DPCDELTA
   CHN
                      0.05 0.05 0.1 0.2 0.6
         SAMPLEWTS
                      0
         LOXGAIN
                      0
         FUELGAIN
         LOXOFFST
                      0
         FUELOFFST
                      0
                      0
         TIMEGAIN
          TIMESTART
                      0
                      0
          TIMESTOP
                      3500
          MODEOUL
          MODEOLL
                      60
          MODE1UL
          MODE1LL
                      60
                      60
          MODE1SD
                      3.0
          MODE1FACT
                      30
          MODE 2UL
                      30
          MODE2LL
                      3.0
          MODE2FACT
                      300
          MODE3GAIN
                      350
          MODE3S1UL
                      350
          MODE3S1LL
                      350
          MODE3S2UL
                      350
          MODE3S2LL
                      350
          MODE3S3UL
                      350
          MODE3S3LL
                      -300
          MODE 4 GAIN
                      350
          MODE4S1UL
                      350
          MODE4S1LL
                      350
          MODE4S2UL
                      350
          MODE4S2LL
                      350
          MODE 4S3UL
                      350
          MODE4S3LL
```

```
MCC_LINER_CAVITY_PRESSURE type1 CUTWEIGHT 1
PARAM
                      100
   QUL
                      -100
   QLL
                      120
   QRATE
                      2.0
   MODE1DWELL
                      0.24
   MODE 3ADWELL
                      0.24
   MODE 3EDWELL
                      0.24
   MODE 4 ADWELL
                      0.24
   MODE 4 EDWELL
                      0.2
   MODE5DWELL
                      100.0
   MODE3CPCDELTA
                      101.0
   MODE3DPCDELTA
                      100.0
   MODE4CPCDELTA
   MODE4DPCDELTA
                      101.0
   CHN
                      0.05 0.05 0.1 0.2
                                               0.6
         SAMPLEWTS
         LOXGAIN
         FUELGAIN
                      0
         LOXOFFST
                      0
         FUELOFFST
                      0
                      0
          TIMEGAIN
                      0
          TIMESTART
          TIMESTOP
                      0
                      100.0
          MODEOUL
                      -100.0
          MODEOLL
                      3.3
          MODELUL
                      0.6
          MODELLL
                      3.3
          MODE1SD
          MODE1FACT
                      3.0
                       3.3
          MODE 2UL
                       0.6
          MODE2LL
                       3.0
          MODE2FACT
                      0
          MODE3GAIN
                       3.3
          MODE3S1UL
                       3.3
          MODE3S1LL
                       3.3
          MODE3S2UL
                       3.3
          MODE3S2LL
                      3.3
          MODE3S3UL
                      3.3
          MODE3S3LL
                      0
          MODE 4GAIN
                      3.3
          MODE4S1UL
                      3.3
          MODE4S1LL
                      3.3
          MODE 4S2UL
                      3.3
          MODE 4S2LL
          MODE 4 S 3 UL
                      3.3
                       3.3
          MODE 4S3LL
```

```
OPOV_ACT_POSITION norm CUTWEIGHT 1
PARAM
                    105
  QUL
                    0
  QLL
                    20
  QRATE
                    2.0
  MODE1DWELL
  MODE 3ADWELL
                   .24
  MODE 3EDWELL
  MODE 4 ADWELL
  MODE 4EDWELL
                  1.0
11.0
101.0
  MODE 5 DWELL
  MODE3CPCDELTA
  MODE3DPCDELTA
  MODE4CPCDELTA
                   11.0
  MODE4DPCDELTA
                    101.0
   CHN
        SAMPLEWTS 0.05 0.05 0.1 0.2 0.6
        LOXGAIN -0.02
                    0
         FUELGAIN
                    0
         LOXOFFST
         FUELOFFST
                    0
         TIMEGAIN
                    0
                    0
         TIMESTART
         TIMESTOP
                    0
                    105
         MODEOUL
                    0
         MODEOLL
                    3.0
         MODEIUL
                    3.0
         MODE1LL
                    3.0
         MODE1SD
         MODE1FACT 3.0
                    6.0
         MODE2UL
                    6.0
         MODE2LL
                    3.0
         MODE2FACT
         MODE3GAIN 3.5
                    12.0
         MODE3S1UL
         MODE3S1LL
                    12.0
         MODE3S2UL
                    12.0
         MODE3S2LL
                    12.0
         MODE3S3UL
                    12.0
                   12.0
         MODE3S3LL
         MODE4GAIN -3.6
         MODE4S1UL 12.0
         MODE4S1LL 12.0
         MODE4S2UL 12.0
         MODE4S2LL 12.0
         MODE4S3UL 12.0
         MODE4S3LL
                   12.0
```

| 9<br>8      |
|-------------|
| 0           |
| 0 0         |
| 3           |
| <b></b>     |
| ပ <b>ာ</b>  |
|             |
|             |
| c co        |
|             |
| -<br>-<br>- |

ž.

÷

| Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Parameters Missing<br>TREF Missing |                     |                           | SD in Start          |                | TREF Missing  |                   |          |          |                |          |                |                    |            |                                                   |                  |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------|---------------------------|----------------------|----------------|---------------|-------------------|----------|----------|----------------|----------|----------------|--------------------|------------|---------------------------------------------------|------------------|---------|
| 9333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                     |                           |                      |                |               |                   |          |          |                |          |                |                    | _          | L                                                 | _                |         |
| 10 - 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                  |                     |                           | ×                    |                | _             | 2.2               | 2        | Σ        | 2              | :        | į              | -                  | 0          | :                                                 |                  |         |
| D D D D D D D D D D D D D D D D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                     | i                         | <br>                 | ;<br>;         |               |                   | !        |          | -              | 1        |                | <br><del> </del> - | :          | <br><del>                                  </del> |                  |         |
| L Pop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                  | 1                   |                           | : 3                  |                | _             | <br>              | <u>.</u> | )        | -              | +        | +              | 1                  | ļ<br>-     |                                                   |                  |         |
| Sh Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                  |                     | ပ                         | <br>                 | -<br>-         | 8             |                   | -        |          | i              | 1        | !              | +                  | <u> </u>   | !<br>                                             |                  |         |
| HPOP<br>TDT B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                  | <sub>0</sub>        | <br> -<br> -              | ა <sup> </sup><br>—— |                | <u> </u>      | 2                 | Σ        | Σ        | -              |          | !<br>+         | +                  | -          | )<br>                                             | <u> </u>         |         |
| TDT A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                  | ပ                   | ပ                         | ပ                    | <b></b>        | _             | ≱:                | _        | Σ        |                | +        | 1              | -                  | -          | +                                                 | -                |         |
| HPFP   HPFP   HPFP   HPPP   HPOP   HPOP | 2                                  | -+-                 | ! ! !<br><del>     </del> | -+-                  | <b></b>        | ≥             | -                 | +        | ی د      |                | +        | -              | -                  | -\-<br>    | -<br> -                                           | -                |         |
| 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                  | <b>2</b> 2          | <b>∑</b> ∪                |                      | <b>≥</b>       | 2             | 2                 | Σ:       | 2 2      | Σ              | Σ.       | <b>2</b>  :    | Σ.                 | <br> -<br> | +                                                 | -                |         |
| HPOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                  |                     | -                         | -                    | <b>&amp;</b> _ | +-8           | 2                 | +        |          |                | 1        | _ <br> -<br>   | -                  | 1          | اد<br> -                                          | <u> </u>         |         |
| Acc Dis Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                  | ++                  |                           |                      | <b>-</b>       | 0             | 2                 | <u> </u> | <u> </u> | +              | <u> </u> | -              |                    | -          | ا د                                               | <u>;</u>         |         |
| A AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                  | 2                   |                           | -                    | <b>&amp;</b> _ | 0             | -<br>-            |          | -        | <u> </u>       | H        | _              | 2                  | -          |                                                   | -                |         |
| HIPE<br>A TOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                  | ادا <u>ہ</u><br>-++ | ++                        | ++                   | <b>-</b>       | -             | <b>»</b> –        | Σ.       |          | +              |          | _              |                    | -          |                                                   | Ť                | 1       |
| Other Failures HPFD HPFD HPFD Sh Sp TOT A TOT B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                  | ٩                   | +                         | +                    | <b>—</b>       | 0             | _                 | 2        | -        | +-             | -        | -              | -                  | -          | +                                                 | +                |         |
| O H S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | ပ <br>              | 10                        | ++-                  | <u></u>        | +-            | _<br>_            | -        |          | -              | <u> </u> | <u> </u>       | <u> </u>           |            | <br>                                              | +                | -       |
| HPFP<br>T Ols Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                  |                     | 1                         | ++                   | ***            | U             |                   | +-       | 2        | <b>5</b> 3     | -        | ပ              | -                  | -          |                                                   | ÷                | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                  |                     | <del></del> ,             | )<br>)               |                |               | <b>-</b>          | ļ_<br>   | -        | - -<br>-       | -        | <del> </del> - | <del> </del> -     |            | -                                                 | -                | 1       |
| Accel Bai<br>Cav Pr<br>M M M<br>D M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                  | ပ                   |                           | - <del></del>        | -              | 2             | <b>%</b> -        | 0        |          | -              | ٥        |                | 1                  |            | ٥                                                 |                  | 1       |
| Fluel HPFP Accel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                  | -+-                 |                           | ا إد<br>ا إد         | -              | -             | <b>—</b>          | -        |          | +              | +-       | +              | +-                 | -          | <del>  -</del>                                    | <del> </del><br> | 1       |
| Poor Fluel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                  | <u>_</u>            |                           | J 0                  | -              |               |                   | +        |          | -              |          | -              | -                  | :          | -                                                 |                  | 1       |
| 0,0<br>d. q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ţ                                  | 389.80<br>76.40     |                           | 80.62<br>581.24      | -              |               |                   | +        | !        |                |          | -              | +                  | +          | :                                                 |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _<br>                              | 8 /                 |                           |                      | -              | -             |                   | 1        | 1        |                |          | ;              |                    | -          | <del>-</del>                                      |                  |         |
| LPOP LPFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                  | <u></u>             |                           |                      |                |               | -                 | +        |          | <del>: ;</del> | +        | -+             | +                  |            |                                                   | +                |         |
| Ref in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>-                             | <b>*</b>            |                           |                      | -              |               |                   | -        |          | -              |          | -              | -                  |            |                                                   |                  |         |
| Stat R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                     |                           |                      | _              |               |                   |          |          |                |          | _              |                    |            |                                                   |                  |         |
| TREF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _<br>ပ                             | ్త<br>ల             |                           |                      |                | * <del></del> | <br>_             |          |          |                |          |                | -                  |            |                                                   |                  |         |
| SD TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00<br>64.60                      | 0.00<br>424.08      | 28.46                     | 84.10<br>596.36      | 288.60         | 369.18        | 1634 56<br>0 00 0 | 99.6     | 68.58    | 27.62          | 9.76     | 23.36          | 215.34             | 10.06      | 14.18                                             | 46.60            | 966     |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 750-245 2                          |                     | 901-485 2                 |                      | -2             |               | 9                 |          |          | 902 158        |          | 902:297        |                    |            | _                                                 | 904-055          | TTB 022 |

. <u>~</u> Table VI Good Tests Rkdn Eng/ Nomthal CCV

SAFD Final Report

ئ

Table VI Good Tests Rkdn Eng/ Nominal CCV

| -       |          |          | -    | _               |              |          | ┝        | _                     | _          |                      |         |          | D Engr       | HD Engine/Nominal CCV | HD Engine/Nominal CCV |   | acan acan     |              | dH godh           | HEOD HEOD HEOD LPFP LPOP        | OdH do      | P LPFP  | LPOP     |        | MCC | OPOV          | Notes                   |
|---------|----------|----------|------|-----------------|--------------|----------|----------|-----------------------|------------|----------------------|---------|----------|--------------|-----------------------|-----------------------|---|---------------|--------------|-------------------|---------------------------------|-------------|---------|----------|--------|-----|---------------|-------------------------|
| Test    | SD       | TREF Eng | a Be | LPOP<br>I In Pr | PFP<br>In Pr | 0<br>0   | Pos<br>8 | NOT NOW               | Accel      | Cav Pr               | 급       |          | Dis Pr Sh Sp | TOTA                  | 10T                   |   | E P.          |              | PBP SSC<br>Dis Pr | SSC Pr TDT A TDT B Sh Sp Dis Pr | A TOT       | S S     | Dis Pr   | 8      | ₹ 9 | <b>8</b> 0    |                         |
|         |          |          |      |                 |              | <u> </u> |          | ; ;<br><del>; ;</del> | i :        |                      | 3       |          |              | ပ                     | ပ                     | - |               |              |                   |                                 | + -         | 1 1     | O        | •      | ≥ ( |               | Possible failure?       |
|         | <u>(</u> |          |      | _               |              | ,        |          | -                     |            | _                    | .2      |          |              |                       | -                     | ٥ |               |              |                   |                                 |             | ပ<br>_  |          | _      | د   | _             |                         |
|         | 499.92   | _        | _    |                 |              |          | ر<br>–   | ×                     | -8         |                      |         | -        |              |                       | •                     |   |               |              |                   | •                               | <u>-</u>    | ۵       | ۵        |        | 3   | ۵             | disq for missing inlets |
| _       | 699.94   |          |      | 3               | 3            |          | ٥        | 3                     |            | <b>2</b>             | *<br>-  | <b>1</b> | •            |                       | ĕ—                    |   |               | _            | _                 |                                 | _           | _       | _        |        |     |               |                         |
|         | 96 662   | _        |      | _               |              |          |          |                       |            |                      |         |          |              | 1                     | +-                    | - | !             | -            | . 2               | 1                               | :           | :<br>   | <u> </u> | _      |     |               |                         |
|         | 249.96   |          |      |                 |              |          |          | -                     |            | -                    | :       |          |              | -                     |                       |   | 1             |              | <u> </u>          | <u> </u> -                      | ļ_          | i.      | <br> -   |        |     | •             |                         |
|         | 519.9    |          |      |                 | _            | _        |          | _                     | - !        |                      | :       |          | ,            |                       |                       | + | ,             | +            |                   |                                 | +           | _       | _        | -      |     | <u>۔</u><br>۵ | MXR1 shift              |
|         | 599.94   |          |      |                 |              | <u> </u> | <u> </u> | <u>ပ</u>              |            | ပ <sub>်</sub>       |         | ۵.       | د            |                       | İ                     |   | )             | †            | -                 | +                               | +           | ÷       | -        |        | •   |               |                         |
|         | 49.98    |          |      | _               | _            |          | -        | -                     | - 1        | -                    | -       |          |              |                       | i                     |   | +             | İ            | <br> -            | 1                               | !           | !       | <u> </u> |        |     |               |                         |
|         | 760.92   |          |      |                 |              | _        |          |                       | -          | -                    | -       | _        | Ī            |                       | İ                     | - | +             | -            |                   | 1                               |             |         | !        | -      |     |               |                         |
|         | 299.96   |          |      |                 |              |          |          |                       | - i        |                      | !       | -        |              |                       |                       |   | -             | 1            | Σ.2               | -                               | -           | -       | -        | !      | Ī   |               |                         |
|         | 6.6/     |          |      |                 |              |          |          | -                     | 1          | :                    |         | -        |              |                       |                       | - | +             | 1            |                   | 1                               | <u>!</u>    | !       | i        |        |     |               |                         |
|         | 264.86   |          |      |                 |              |          |          | -                     | +          |                      | -       | į        |              |                       | İ                     |   | +             | -            | 2                 | -                               | <u> </u>    | -       | -        | _      | _   |               |                         |
| 901-631 | 299.84   | -        |      | _               | -            |          |          | <del>-</del>          | +          |                      | :       |          |              |                       | !                     | + | <del> -</del> | -            | 2                 | -                               |             |         | -        |        |     | •             |                         |
|         | 174.88   |          |      |                 |              | -        | _        | -                     | <u>-</u>   | -                    | ·       |          |              |                       |                       | - | -             |              | 2                 | _                               | :<br>       |         |          | _      |     |               |                         |
|         | 599.96   |          |      | :               |              | _        | -        |                       | -          | ·<br>•               | i       | -        |              | _                     | İ                     |   | -             | <del> </del> | 2                 | Ļ.                              | !           | :       | -        |        |     |               |                         |
|         | 149.96   |          |      |                 |              |          | -        | -                     | +          |                      | •       | C        | •            | c                     |                       | + | -             |              | -                 |                                 |             | 0       |          |        |     |               |                         |
| 901-655 | 636.9    |          |      |                 | _            |          | _        | _                     | ပ<br>—     |                      | _<br>   | د<br>    | ء<br>-       | <u></u>               |                       |   | -<br>شد       | -            | -                 | -                               |             |         |          |        |     |               | Missing TREF            |
| 99      | 0        | ပ        |      |                 | *            | Š.       |          |                       | <b>%</b> _ | 88<br>88<br>88<br>88 | <b></b> | *<br>*-  |              |                       | -<br>-                |   | <u> </u>      |              | _                 |                                 |             | _       |          |        |     |               |                         |
| 199-106 | 96.66    |          |      |                 |              | _        | -        | +                     | +          | -                    |         | ر        | ر            | 5                     | 5                     | Ī | ن             | 1            | 2                 | -                               | 0           | 0       | ပ        | ပ      |     | 9             | OK PC Ref bad @ 75      |
| 299     | 11       |          |      |                 | - +          | اد       | اد       | د                     | 7          | د                    | 3       | >        |              | -                     | 3                     | - |               |              | <del> </del>      |                                 | <del></del> | _       | _        |        |     |               |                         |
| 963     | 96 66    |          |      |                 |              |          |          | _                     | -          | -                    | +       | :        | +            | ļ                     | <u>.</u>              | İ |               | !            | <u> </u>          | :                               | -           | <u></u> | -        |        |     |               |                         |
| 901-667 | 86.662   |          |      |                 |              |          |          | -                     | -+         | +                    |         |          |              |                       |                       | ! | -             |              |                   | -                               |             |         |          |        |     |               |                         |
|         | 549.96   | _        |      |                 |              | _        | _        | -                     |            | -                    | i       | 1        | -            |                       |                       |   | -             | +            | -                 | +                               | -           | -       | i<br>-   |        | -   |               |                         |
|         | 512.92   | _        |      |                 | _            |          | _        |                       |            | !                    | !       | +        | 1            |                       |                       | ļ | :             |              | 2                 | +                               | !           |         | <br>     | :      |     | i             |                         |
| _       | 86.662   |          |      |                 |              |          | -        | - +                   | -          |                      | +       | -        | -            | -                     | 1                     |   | 1             |              | 2                 | 1                               | -           |         | i<br>    | i<br>- |     |               |                         |
| 901-713 | 49.96    | -        | _    |                 |              |          | _        |                       |            |                      |         |          |              | ļ                     |                       | + | 1             |              | _                 | :                               |             |         | <u>.</u> |        |     |               |                         |
| 901.721 | 24 96    |          | _    |                 |              |          |          |                       |            | _                    | _       | -        |              |                       |                       | 1 |               | 1            |                   |                                 |             |         |          |        |     |               |                         |

Table VI Good Tests Rkdn Eng/ Nominal CCV

Notes OPOV Pos Σ MCC Pc HPOP HPOP HPOP LPFP LPOP PBP SSC Pr TDT A TDT B Sh Sp Dis Pr 000000 ပ Σ 2222 HPOP HPOP I HPOP Acc 3 2 HPFP HPFP HPFP H HPFP HPFP HPFP H DIS Pr Sh Sp TDT A TDT B ۵ ū HPFP HPFP Bal Cint Cav Pr Lin Pr ပ ٥ . پې HPFP Accel **∑**|∑ Fuel Flow FPOV Pos 0,0 LPFP In Pr LPOP In Pr P. B Eng Stat TREF 299.94
299.94
299.82
299.82
299.82
299.84
299.84
299.84
299.84
299.84
299.84
299.84
299.84
299.84
299.84
299.86
299.84
299.86
299.86
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87
299.87 219.98 174.96 44.96 S 902.248
902.391
902.405
902.405
902.405
902.570
902.572
902.573
902.578
902.578
902.578
902.580
902.580
902.580
902.580
902.580
902.580
902.580
902.580
902.580
902.580
902.580 904-003 904-128 904-134 Test

Pr -7

Table VII Good Tests PW LOX / Nominal CCV

| Notes                                                                       | Fac. Delta I Cut<br>Fac. Delta I Cut<br>Fac. Delta I Cut | Fac. Cut for hire                         | ;                          |              |                 |                         |        |                       |             |             |          | Fac. Delta I Cut | ac. Dona            | Fac. Delta I Cut |             |          |                  |          | rac. Della I cui                                      |                |           |                        | ;<br>      | IMSE LO PIL CUI | Fac Cut for Fire                                 | ELU Induced |                  | Bad data  |
|-----------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|----------------------------|--------------|-----------------|-------------------------|--------|-----------------------|-------------|-------------|----------|------------------|---------------------|------------------|-------------|----------|------------------|----------|-------------------------------------------------------|----------------|-----------|------------------------|------------|-----------------|--------------------------------------------------|-------------|------------------|-----------|
| Pos                                                                         |                                                          | ш.                                        |                            |              |                 |                         |        |                       |             | <del></del> |          |                  |                     |                  |             |          |                  |          |                                                       |                |           |                        |            |                 | + -                                              |             | <u> </u>         |           |
| MCC OPOV<br>Lin Pos                                                         | <del>-i</del>                                            |                                           |                            |              |                 | ,                       |        |                       | !           |             |          |                  | -                   |                  |             |          |                  |          |                                                       |                | -         | : ,<br><del>:   </del> |            |                 | -                                                | -           |                  | - G3      |
| 2 & S                                                                       | <del>- </del>                                            | <del></del>                               |                            |              |                 | -                       |        | :                     |             |             |          |                  | :<br>               | i                |             |          |                  |          | İ                                                     | i              |           |                        | _          |                 | +                                                | <u> </u>    | 1                | 8         |
|                                                                             | -+                                                       | <del>-      </del>                        |                            | !            |                 |                         |        | -                     |             | 1           |          |                  |                     |                  |             |          | İ                |          |                                                       |                |           |                        |            |                 | ·                                                |             | i                |           |
| PFP L                                                                       | -+                                                       |                                           | +                          | <del> </del> | + !             | -+                      |        | -                     | +           |             |          |                  |                     |                  | !           |          |                  |          | İ                                                     | ;              |           |                        |            |                 | i<br>                                            | <br>        |                  |           |
| 70P L                                                                       |                                                          |                                           |                            | <b>↓</b>     |                 |                         | -      | -                     |             |             | -        |                  |                     | . 1              |             | i        |                  | . 1      | 1                                                     |                |           |                        |            |                 |                                                  |             |                  |           |
| P F                                                                         |                                                          |                                           |                            |              |                 |                         | +7     |                       |             |             |          |                  |                     |                  | -           |          |                  | . 1      |                                                       |                |           |                        |            |                 |                                                  | !!          |                  | <u>•</u>  |
| 11 H                                                                        | +++                                                      |                                           | -                          | † †          | +-              | -                       | +1     | +-                    | +-          | ++          |          | $\Box$           | -                   |                  |             | ပ        |                  | ပ        | Ī                                                     |                | 1         |                        |            | ပ               | _ ·<br>[                                         |             |                  | ·         |
| HPOP HPOP HPOP LPFP LPOP PBP SSC P(TDT A TDT B Sh Sp Dis Pr Dis Pr          |                                                          |                                           | +                          | +            | +-              |                         | +      |                       |             |             | Ī        |                  |                     |                  |             |          | i                |          |                                                       |                |           |                        |            |                 |                                                  |             |                  |           |
|                                                                             |                                                          | +++                                       | +                          |              | -               | H                       | Ħ      | Ì                     | İ           |             |          |                  | +                   |                  |             |          |                  |          |                                                       | 1              |           |                        |            |                 |                                                  |             |                  |           |
| HPFP HPFP HPFP HPOP HPOP HPOP HPOP Dis Pt Sh Sp TOT A TOT B Acc Dis Pt 1851 |                                                          |                                           |                            |              |                 |                         |        |                       | 1           | Н           | +        | ++               | -                   | -                | <del></del> | ī        | İ                |          | Ť                                                     | 1              |           | 1                      |            |                 |                                                  |             |                  | 00000000  |
| 4 A                                                                         |                                                          | 0                                         | +                          |              | +-              |                         | 1      | <del> -</del><br>     | -           |             | -        |                  | +                   | <u> </u>         | -           | <u> </u> |                  | <u> </u> |                                                       |                |           |                        | -          | <del></del>     |                                                  | ++          |                  |           |
| TB A®                                                                       |                                                          |                                           |                            |              | ۵ ۵             |                         | +      | $\prod_{i=1}^{l}$     | 1           |             |          | +                | +                   | <del> </del> -   | -           |          |                  | +-       |                                                       | i              |           |                        | ++         | +               | ٥                                                | 10          | _<br>_<br>_<br>_ | □         |
| PW LOX, Nominal CCV HPFP HPFP HPFP Dis Pr Sh Sp TDT A TDT B                 | +                                                        | $\vdash$                                  |                            | 1            | 0 0             | ++                      | +      |                       | +           | -           |          | +                | +                   | 1                | H           | +-       | 0                | -        |                                                       | Ť              |           | +                      | ++         | +-              | ٥                                                |             | ٥٥               | _         |
| χ d d d d d d d d d d d d d d d d d d d                                     | +++                                                      |                                           | 4                          |              | -               |                         | -      | $\sqcup$              | +           | +           |          |                  | $\vdash$            | -                | +           | +        |                  | +        |                                                       | +              |           | 1                      | ++         | +               | +                                                |             |                  | +-        |
| S S S                                                                       |                                                          | 111                                       |                            | :            | -               |                         | -      | $\dashv$              | -           | +           | $\vdash$ | +                | -                   | -                | +           | <u> </u> | +                | +        |                                                       | <u>.</u>       |           |                        | +          |                 | <del>                                     </del> | -           | +                | +         |
| H 40                                                                        |                                                          |                                           | 1                          | -            |                 |                         | -      | 1                     | 1           | -           |          |                  | +                   | +                |             | 1        | H                | -        | ! !<br><del>                                   </del> | <u> </u>       |           | +                      | +          | -               | 1                                                | +           |                  | +         |
| HPFP<br>Cint                                                                |                                                          |                                           | · ·                        |              | <del>- !-</del> |                         | -      | : !<br><del>: :</del> | -+          | -           |          | +                | :<br><del>   </del> | -                | +-!         |          |                  |          | -                                                     |                | · ·       |                        | + -        |                 | 1 :                                              | +           |                  | -         |
| HPFP HPFP<br>Accel Bal<br>Cav Pr                                            |                                                          | :                                         |                            | -            |                 | ; ;<br><del>; ;</del> ; | -      | · ·                   |             | -           |          |                  |                     | ·<br>            | -           | -        | -                |          | <u> </u>                                              | +              |           | -                      |            |                 | 1                                                |             |                  |           |
| Accel                                                                       |                                                          |                                           |                            |              | · .             | :                       | :      |                       |             |             |          | +-               |                     | -                |             | _        | +                | -        |                                                       | - <u> </u><br> | -         | _                      | -          | -               |                                                  | <u>.</u>    |                  | O         |
| Fuel                                                                        |                                                          |                                           |                            |              |                 | !                       | -      |                       |             |             |          |                  |                     | !<br>+-          | -           |          |                  | +        | -                                                     | +              | -         |                        | <u> </u>   |                 | + +                                              |             |                  | -         |
| FPOV                                                                        |                                                          | i .                                       | 7 1                        |              | ,               | ! ;                     |        | :                     |             |             |          |                  |                     |                  | i .         |          |                  | -        |                                                       |                |           | j                      | <u>ာ</u> ပ | ပ <u>်</u>      | ·                                                |             |                  |           |
| 9                                                                           |                                                          |                                           |                            |              |                 | . 1                     |        |                       |             |             |          | !                | j                   |                  | !           | :        |                  |          |                                                       |                | :         | -                      |            |                 |                                                  |             |                  |           |
| LPFP<br>In Pr                                                               | <del></del>                                              |                                           |                            |              | :-              |                         |        | i                     |             |             |          |                  |                     |                  | :           |          |                  | ! '      | !                                                     |                |           |                        |            |                 |                                                  |             |                  |           |
| LPOP L                                                                      |                                                          |                                           | +                          |              |                 |                         |        |                       | . 1         |             |          |                  |                     | ,                | :           |          |                  |          | 1                                                     |                |           |                        |            |                 |                                                  |             |                  |           |
| Pc Li                                                                       | · · · · · ·                                              | <u>·</u>                                  |                            |              |                 |                         |        |                       |             |             |          |                  | -                   | -                |             |          |                  |          |                                                       |                |           |                        |            |                 |                                                  |             |                  |           |
| Eng 1                                                                       |                                                          |                                           |                            |              |                 |                         |        |                       | -           |             |          |                  |                     |                  | -           |          | _                |          |                                                       |                |           | •                      |            |                 | -                                                |             |                  |           |
| TREF E                                                                      |                                                          | <del></del>                               |                            |              |                 |                         |        |                       |             |             |          |                  |                     |                  |             |          |                  |          |                                                       |                |           |                        |            |                 |                                                  |             |                  |           |
|                                                                             | 24.96<br>71.84<br>100.68                                 | 195.62<br>849.98<br>136.46                | 519.96<br>849.98           | 519 94       | 849.96          | 14.98                   | 199.98 | 96'6                  | 519.94      | 519.94      | 519.94   | 79.80            | 166.00              | 519.98           | 187.86      | 293.80   | 519.94<br>519.96 | 753.98   | 258.60                                                | 753.94         | 39.96     | 849.96                 | 859.96     | 849.98          | 19.94                                            | 73.52       | 264.98           | 519.96    |
| as                                                                          | 24<br>100                                                | 901-730 195<br>901-731 849<br>901-732 136 | 901-733 519<br>901-734 849 |              |                 | 901.738 14              |        | 515                   | 904-151 519 |             |          |                  | 904-156 21          |                  | 904-159 18  |          | 904-162 51       |          | 904-165 50<br>904-166 25                              |                | 904-168 3 |                        |            |                 | 904.174 2<br>904.175 5                           | 904-176     |                  | 904-179 5 |

P; +0

## Table VIII Good Tests PW LOX/Modified CCV

SAFD Final Report

## Table VIII Good Tests FW LOX/Modified CCV

| _              |       |     |     |       |      |     |     |             | _                                 |             |        |       | ¥<br>XO | PW LOX, Modified CCV                    | ح     |      |        |       |          |      | _            | -       |        |    | -       |             |  |  |
|----------------|-------|-----|-----|-------|------|-----|-----|-------------|-----------------------------------|-------------|--------|-------|---------|-----------------------------------------|-------|------|--------|-------|----------|------|--------------|---------|--------|----|---------|-------------|--|--|
| 35             | TREE  | End | ď   | 90    | PF P | C/0 | 2   | T Ten       | LPOP LPFP C/O FPOV Fuel HPFP HPFP | FP HP       | d<br>H | FP HP | FP HP   | HPFP HPFP HPFP HPFP HPFP HPFP HPOP HPOP | P HPO | F EP | P HPG  | P HPO | P HPO    | OH O | PPO          | t LPFF  | 2      | 2  | ပ<br>(န | o<br>o<br>o |  |  |
| ;<br>          | Tels. | 7   | Bel | J. Pr | P.   | _   | Pos | NOL         | Coel                              | ᇹ           | 500    | Pr Sh | 50 101  | A TDT                                   | B Ag  | Ois  | Pr INS | L PBF | SSC      | 101  | A TDT        | B Sh St | Dis P. | 2  | 5       | Pog<br>S    |  |  |
|                | _     |     |     | -     | -    | -   | !-  | :           | ٿ                                 | Cay Prillin | ď      | -     | -       |                                         | -     |      |        | 280   | <u>ا</u> | _    |              |         | _      |    | Cav Pr  |             |  |  |
|                |       |     | _   | -     |      |     | ٠   | 1           |                                   | -           |        |       |         | :                                       | -     | Ĺ    |        | 1     | !        |      |              |         |        |    |         |             |  |  |
| _              |       |     |     | _     |      |     |     | -           | -                                 | _           |        | -     |         | +                                       |       | +    | -      |       |          | -    |              | į       |        | ;  |         |             |  |  |
| 11 519         | 86    |     |     | -     |      |     |     |             |                                   |             |        | -     | -       |                                         |       | -    | -      |       |          | -    | <del>-</del> | 1       |        |    | -       |             |  |  |
| 12 502         | 94    |     |     |       |      |     |     | _           | _                                 | _           | -      | -     | -       |                                         | -     | -    | -      | -     | !        |      | -<br>-       | -       | -      |    |         |             |  |  |
| 901-813 519.96 | 96    |     |     |       |      |     | -   | <del></del> |                                   |             |        | -     | -       | -                                       | -     | -    | _      | +     | +        |      | -            | ·       |        | i  |         |             |  |  |
| 14 519         | 86    |     |     |       |      |     |     |             | -                                 | -           | -      | +     | -       |                                         | +     | -    | -      | +     | <u> </u> |      | +            | -       |        | _, |         |             |  |  |
| 15 519         | 96    |     |     | _     |      |     | _   |             |                                   |             |        |       | 1       | _                                       | -     | -    | _!     | -     | -        | !    | -<br> -      | -       | -      | -  |         |             |  |  |
| 16 209         | 96    |     |     |       | -    |     |     |             |                                   |             |        | _     |         | -                                       |       | -    | -      | _     | -        | -    | ပ<br>-       | :       |        | 1  | 1       |             |  |  |
| 90 006 718 100 | 90    | -   |     | •     |      |     |     |             | -                                 | _           | _      | _     | _       |                                         |       |      |        |       |          |      |              |         |        |    |         |             |  |  |

## Table VIII Good Tests PW LOX/Modified CCV

SAFD Final Report

MR mods @ 454 MR mods @ 80/HPOP TDT A HPOP TDT A/HLU Ch A Pwr Off in MS
ELU in MS
Ce A fail in MS
OCUB halt
life in POGO area
HLU in MS
CE Atail in MS
CE Atail in MS
IE A fail in MS
CE Atail in MS
CI stability test DCUB Pwr Off - ELU FF Failures Induced SD Prior to SAFD Hyd Pr Off in MS Bomb Test Bomb Test Bomb Test OPOV Pos ပ LE Cav Pr 0 ပ 5 5 LPOP Dis Pr ပ a ShSp ပ ပ ۵ ပ HPOP TDT B 000 0 0 P HPOP HPOP H ပြုပြုပ ပ ۵ ٥ ۵ HPOP PBP S PBP S O ပ HPOP ٥ HPOP Dis Pr ٥ ပ HPFP HPFP HPFP HPCP HPCP DIS PF Sh TDT A TOT B Acc ₹ Ç 000000 ۵ ۵ OO ပြုပ 100000 00 ပ ပြ ٥ 000 000 0000 HPFP HPFP I Bat Cint C Cav Pr Lin Pr 00 ပ Ů. HPFP Accel Fuel 000 Pos Pos ပပ 8 0:0:0 LPFP In Pr LPOP In Pr چ ق Eng Stat TREF 6.22 709.96 559.96 519.96 519.96 519.96 519.96 519.94 709.94 709.96 709.96 709.96 709.96 709.96 709.96 709.96 709.96 709.96 709.96 14.96 14.98 14.96 2704.96 254.94 184.98 184.98 184.98 184.98 519.94 519.96 519.96 519.96 519.96 519.96 519.96 SO 904-182 904-183 904-184 904-186 904-186 904-189 904-190 904-191 904-197 904-203 904-204 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-208 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 904-207 Test

SAFD Final Report

Table VIII Good Tests FW LOX/Modified CCV

|         |        |            |       |         | -      | -   | }   | -       | -   | -                      | -         |          | SO I MIC      | Hodi.         | WO LANGE MANIEL COV |      |                                         |                                              | -           | <u> </u> -                                   | -                                     | -                   | _        |          |   | _        | _           |  |   |
|---------|--------|------------|-------|---------|--------|-----|-----|---------|-----|------------------------|-----------|----------|---------------|---------------|---------------------|------|-----------------------------------------|----------------------------------------------|-------------|----------------------------------------------|---------------------------------------|---------------------|----------|----------|---|----------|-------------|--|---|
| Test    | SD     | TREF       | Eng P | Pc LPOP | P LPFP | 000 | Pos | 3V Fuel |     | HPFP HPFP<br>Accel Bal | II.       |          | HPFP<br>Sh Sp | HPFP<br>TDT A | HPFP<br>TOT B       | A Bo | HEPP HEPP HEPP HEPP HEOP HEOP HEOP HEOP | HPOP I                                       | HPOP H      | HPOP H                                       | HPOP H                                | HPOP LI<br>TOT B SI | LPFP LF  | LPOP II  |   | MCC OPON | Pos         |  |   |
|         |        | . <u>-</u> |       |         |        |     |     |         |     | و                      | Pr Lin Pr | _        | _             |               |                     | :    |                                         | -                                            | 2           | +                                            |                                       | :-                  | -        |          | - |          | <del></del> |  |   |
|         | _      |            | _     |         | _      |     | -   | -       | :   | -                      | :         |          |               |               | O                   |      | !                                       | <u>.                                    </u> |             | -                                            | -                                     |                     |          |          |   |          |             |  |   |
| 904-242 | 96.209 |            |       |         | -      |     |     | 1       | +   | !                      | -         | -        |               |               | c                   | İ    |                                         | 1                                            | -           | <del>  -</del>                               | · · · · · · · · · · · · · · · · · · · | _                   |          |          | _ | _        | - ;         |  |   |
| 904-243 | 519.96 |            |       |         |        |     | _   | -       | -   | 1                      | -         | -        |               |               | <u></u>             | Ī    |                                         |                                              | <u>ا</u>    |                                              | 0                                     | <u>-</u>            | <u> </u> | ٥        |   | _        | _           |  |   |
| 904-244 | 96.097 |            |       | :       |        |     | !   | :       | -   |                        | 1         | -        | -             |               | T                   |      | <del>!</del> -                          | <del> -</del>                                | <del></del> |                                              |                                       | -                   | !        |          | _ |          |             |  |   |
| 904-245 | 509.96 |            |       |         |        |     |     |         |     | _                      | -         | -        |               |               | ٠                   | T    |                                         | 1                                            | -           | <u>.                                    </u> | <b>⊢</b><br>i                         |                     | <u> </u> | <u> </u> |   | _        |             |  |   |
| 904-246 | 214.94 |            |       |         |        |     | -   | _:      | -+  | -                      | 1         |          | 1             |               | >                   | I    | +                                       | +                                            | <br>        | ;                                            | · -                                   | -                   |          | :        |   | _        | _           |  |   |
| 904-247 | 519.94 |            |       |         |        | :   | -   |         |     | :                      | -         |          |               | <br> -        | 1                   | 1    | -                                       | -                                            |             | 0                                            |                                       | -                   | !        | i        | - |          |             |  |   |
| 904-248 | 502.96 |            | _     | -       | -      |     | _   | - 1     | _   | -                      | -         |          |               |               | <br> -              |      | 1                                       |                                              |             |                                              |                                       | <u> </u>            | _        |          |   | _        |             |  |   |
| 904-249 | 519.96 |            |       |         | :      |     | i   |         | -   | 1                      | -         |          | -             | <br>          |                     | Ĺ    |                                         |                                              |             |                                              |                                       | <del></del>         | i        |          |   | _        |             |  |   |
| 904-250 | 753.96 |            |       |         |        |     | -   | -       | +   | -                      | -         |          | +             | :<br>         | -                   | _    |                                         |                                              |             |                                              | _                                     |                     |          | _        |   | -        |             |  |   |
| 904-251 | 96.097 |            |       | -       | _      | -   |     | -i      | - 1 | <br>i.                 | -         | <u> </u> |               | -             | +                   | 1    | !                                       | † †                                          | İ           |                                              | :                                     | -                   | -        |          |   |          |             |  |   |
| 904-252 | 96 604 |            |       | -       | _!     | :   | -   | -       | -   |                        | -         |          |               | 1             | !                   |      |                                         |                                              |             |                                              |                                       |                     |          |          |   |          |             |  |   |
| 904-253 | 209.98 |            |       |         |        |     | -   | -       |     | _                      |           | -        | !<br>+        | -             | ;<br> -             | :    |                                         | 1                                            | -           |                                              | -                                     | !                   |          |          |   |          |             |  |   |
| 904-254 | 519.94 |            |       |         | -      | !   | +   | 1       | -   | -<br>-                 | -         | -        | !             | 1             |                     | Ĺ    |                                         |                                              |             | 1                                            | !                                     | İ                   |          | -        |   |          |             |  |   |
| 904-255 | 519.94 |            |       | -       | -      |     | -   | -       | -   | !                      |           | -        |               |               | -                   | ;    | :                                       | :                                            |             | !                                            |                                       | i                   |          | -        | - | -        |             |  |   |
| 904.256 |        | _          |       |         | -      | -   | -   | -       | +   | -                      | +         | +        | +             | -             | +                   | _    |                                         | Ĺ                                            | -           |                                              |                                       |                     |          |          |   |          |             |  |   |
| 904 257 | S      |            |       |         | _      | _   |     |         | _   | _                      |           |          | !             | -             | -                   |      |                                         | Ĺ                                            |             | İ                                            | !                                     |                     |          | i        | i |          | -           |  |   |
| 904 258 |        | _          |       | -       | -      | -   | -   | 1       | +   | 1                      | -         | -        | -             | -             | <u> </u>            | 1    |                                         |                                              |             |                                              |                                       |                     |          | +        | 1 | +        |             |  |   |
| 904.259 | 96.66  |            |       | _       | -      |     | !   | -       | +   | Ī                      | 1         | _        | <del> </del>  | !<br> -       |                     |      |                                         |                                              |             |                                              |                                       | _                   |          | _        |   | -        | -           |  | ٦ |
|         |        |            | _     | _       |        | _   | _   | _       |     |                        | _         | _        |               | _             | _                   |      |                                         |                                              |             |                                              |                                       |                     | -        |          |   |          |             |  |   |